matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieAbgeschlossenheit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Abgeschlossenheit
Abgeschlossenheit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abgeschlossenheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:08 Mo 01.07.2013
Autor: hula

Hallöchen

ich habe einen endlichen Wahrscheinlichkeitsraum mit Mass $P$. Nun indentifiziere ich den Raum aller Zufallsvariablen mit [mm] $\mathbb{R}^n$ [/mm] mittels [mm] $X(\omega_i):=x_i$ [/mm] für $X$ eine Zufallsvariable. Sei $A$ die Menge aller Wahrscheinlichkeitsmasse $R$, die absolut stetig bzgl. $P$ sind. Dann kann ich $A$ mit [mm] $\Delta^n$ [/mm] identifizieren, wobei [mm] $\Delta^n$ [/mm] der Einheitssimplex im [mm] $\mathbb{R}^n$ [/mm] darstellt. Ich habe nun eine Funktion $h$ vom Raum aller Zufallsvariablen nach [mm] $\mathbb{R}$. [/mm] Ich konnte zeigen, dass diese konvex ist. Da ich nun diese Identifizierung gemacht habe, weiss ich, dass $h$ stetig ist. (in [mm] $\mathbb{R}^n$ [/mm] ist jede konvexe Funktion stetig. Daraus sollte nun folgen, dass die Menge [mm] $B:=\{R\in A:\forall X, E_R[X]\le h(R)\}$ [/mm] abgeschlossen ist. Wobei die $X$ wieder Zufallsvariablen sind. Wieso gilt dies genau?

Dankeschööön für die HIlfe!

hula

        
Bezug
Abgeschlossenheit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Mo 01.07.2013
Autor: Gonozal_IX

Hiho,

> Dann kann ich [mm]A[/mm] mit [mm]\Delta^n[/mm] identifizieren, wobei [mm]\Delta^n[/mm] der Einheitssimplex im [mm]\mathbb{R}^n[/mm] darstellt.

Das stimmt nur, wenn P>0 gilt.
Das können wir oBdA aber annehmen, warum?

> Daraus sollte nun folgen, dass die Menge [mm]B:=\{R\in A:\forall X, E_R[X]\le h(R)\}[/mm] abgeschlossen ist.

mit [mm] $r_i [/mm] = [mm] R[\{\omega_i\}]$ [/mm] gilt [mm] $E_R[X] [/mm] = [mm] \summe_{i=0}^n x_i*r_i$ [/mm]

Nun kannst du direkt zeigen, dass für [mm] $R_k \to [/mm] R$ mit [mm] $R_k \in [/mm] B$ sofort [mm] $R\in [/mm] B$ gilt.
Das ist einfaches nachrechnen und ausnutzen von Grenzwerteigenschaften.

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]