matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFormale SprachenAbgeschl. unter   Schnitt
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Formale Sprachen" - Abgeschl. unter Schnitt
Abgeschl. unter Schnitt < Formale Sprachen < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abgeschl. unter Schnitt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 Mi 03.05.2006
Autor: dobberph

Aufgabe
Zeigen Sie, dass die Klasse der regulären Sprachen abgeschlossen ist unter Schnittbildung, d.h. [mm] L_{1} \cap L_{2} [/mm] ist regulär, falls [mm] L_{1} [/mm] und [mm] L_{2} [/mm] regulär sind.

Ansatz:
Annahme: Zu jeder endlichen Sprache exisitert ein endlicher Automat.
Ich suche also hier auch eine Automatenregel, die einen Schnitt zweier Sprachen konstruiert.

- nacheinander schalten funktioniert nicht
- aber abfragen ob er bei beiden Automaten akzeptiert geht auch nicht...

Vielleicht muss man die Zustände der Automaten irgendwie miteinander verknüpfen, aber da fällt mir partout nichts ein.

Danke,
DerTobi

        
Bezug
Abgeschl. unter Schnitt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Mi 03.05.2006
Autor: mathiash

Hallo Tobi,

falls [mm] S_1 [/mm] und [mm] S_2 [/mm] die Zustandsmengen der beiden Automaten sind, so probier doch mal,

S= [mm] S_1\times S_2 [/mm]  

zu wählen und die beiden Automaten auf der Eingabe parallel zu simulieren. ;-)

Gruss,

Mathias

Bezug
                
Bezug
Abgeschl. unter Schnitt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:44 So 07.05.2006
Autor: dobberph

(Sry, dass ich mich so spät erst melde, war im Kurzurlaub)
Hm,
und wie kann ich 2 Automaten parallel organisieren, bzw. was heisst
S1 x S2 ?
Das kenn ich noch nicht.

Mfg,
DerTobi

Bezug
                        
Bezug
Abgeschl. unter Schnitt: Antwort
Status: (Antwort) fertig Status 
Datum: 04:08 Mo 08.05.2006
Autor: mathiash

Hallo und guten Morgen,

[mm] S_1\times S_2 =\{(s,s')|s\in S_1,\: s'\in S_2\} [/mm]

ist das kartesische Produkt der beiden Mengen, und die Übergangsfunktion [mm] \delta [/mm] ist dann definiert als


[mm] \delta ((s,s'),a)\:\: =\:\: (\delta_1(s,a),\: \delta_2 [/mm] (s',a))

für [mm] s\in S_1, s'\in S_2, a\in [/mm] Sigma   (Alphabet).

Versuch Dir nun mal zu überlegen, wie ''der Rest des Automaten'' definiert ist.

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]