matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenAbbildungsmatrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Abbildungsmatrizen
Abbildungsmatrizen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungsmatrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:49 Mi 09.06.2010
Autor: lausch

Aufgabe
Es sei V := [mm] \IQ^2x3 [/mm] der [mm] \IQ-Vektorraum [/mm] der 2x3-Matrizen,W := [mm] \IQ^2x2 [/mm] der [mm] \IQ-Vektorraum [/mm] der 2x2-
Matrizen und phi : V [mm] \toW [/mm] die folgende Q-lineare Abbildung:
phi : V [mm] \toW [/mm] ; M [mm] \mapsto [/mm] M*A ; wobei A =
[mm] \pmat{ 1 & -3 \\ 2 & -2 \\ 3 & -1 }\in\IQ [/mm] ^3x2

Weiter seien die geordneten Basen
B:=
[mm] (\pmat{ 1 & 0 & 0 \\ 0 & 0 & 0 } [/mm] , [mm] \pmat{ 0 & 1 & 0 \\ 0 & 0 & 0 }, \pmat{ 0 & 0 & 1 \\ 0 & 0 & 0 },\pmat{ 0 & 0 & 0 \\ 1 & 0 & 0 },\pmat{ 0 & 0 & 0 \\ 0 & 1 & 0 },\pmat{ 0 & 0 & 0 \\ 0 & 0 & 1 }) [/mm] von V

und [mm] C:=(\pmat{ 1 & 0 \\ 0 & 0 },\pmat{ 0 & 1 \\ 0 & 0 },\pmat{ 0 & \bruch{1}{2} \\ \bruch{1}{2} & 0 },\pmat{ 0 & \bruch{1}{2} \\ -\bruch{1}{2} & 0 }) [/mm] von W gewählt.
Berechnen sie die Abbildungsmatrix M B C (phi) bzgl. dieser beiden Basen.


Hallo,
ich versuche jetzt schon die ganze Zeit rum, komme aber nicht wirklich auf ne Lösung. Ich habe schon einmal eine Abbildungsmatrix gebildet, aber nur bzgl einer Basis.
Wahrscheinlich ist es ähnlich trivial wie bei der Abbildungsmatrix bzgl. einer Basis.. Wie gehe ich hier vor? Habt ihr irgendwelche Tipps?

Dankee

        
Bezug
Abbildungsmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:04 Mi 09.06.2010
Autor: angela.h.b.


> Es sei V := [mm]\IQ^2x3[/mm] der [mm]\IQ-Vektorraum[/mm] der 2x3-Matrizen,W
> := [mm]\IQ^2x2[/mm] der [mm]\IQ-Vektorraum[/mm] der 2x2-
>  Matrizen und phi : V [mm]\toW[/mm] die folgende Q-lineare
> Abbildung:
>  phi : V [mm]\toW[/mm] ; M [mm]\mapsto[/mm] M*A ; wobei A =
>  [mm]\pmat{ 1 & -3 \\ 2 & -2 \\ 3 & -1 }\in\IQ[/mm] ^3x2
>  
> Weiter seien die geordneten Basen
>  B:=
>  [mm](\pmat{ 1 & 0 & 0 \\ 0 & 0 & 0 }[/mm] , [mm]\pmat{ 0 & 1 & 0 \\ 0 & 0 & 0 }, \pmat{ 0 & 0 & 1 \\ 0 & 0 & 0 },\pmat{ 0 & 0 & 0 \\ 1 & 0 & 0 },\pmat{ 0 & 0 & 0 \\ 0 & 1 & 0 },\pmat{ 0 & 0 & 0 \\ 0 & 0 & 1 })[/mm]
> von V
>  
> und [mm]C:=(\pmat{ 1 & 0 \\ 0 & 0 },\pmat{ 0 & 1 \\ 0 & 0 },\pmat{ 0 & \bruch{1}{2} \\ \bruch{1}{2} & 0 },\pmat{ 0 & \bruch{1}{2} \\ -\bruch{1}{2} & 0 })[/mm]
> von W gewählt.
>  Berechnen sie die Abbildungsmatrix M B C (phi) bzgl.
> dieser beiden Basen.
>  
>
> Hallo,
>  ich versuche jetzt schon die ganze Zeit rum,

Hallo,

schade, daß Du uns nich an Deinen Überlegungen teilnehmen läßt.
Das wären dann auch die lt. Forenregeln geforderten Lösungsansätze.

> komme aber
> nicht wirklich auf ne Lösung. Ich habe schon einmal eine
> Abbildungsmatrix gebildet, aber nur bzgl einer Basis.

Interessant wäre zu hören, wie Du das gemacht hast.

>  Wahrscheinlich ist es ähnlich trivial

???

> wie bei der
> Abbildungsmatrix bzgl. einer Basis.. Wie gehe ich hier vor?
> Habt ihr irgendwelche Tipps?

Überleg Dir erstmal, welches Format die Darstellungsmatrix haben wird.

Kochrezept:

man erinnert sich wieder an das Standardsprüchelchen: "In den Spalten der Darstellungsmatrix stehen die Bilder der Basisvektoren der Basis des Startraumes in Koordinaten bzgl der Basis des Zielraumes".

Damit steht der Plan:

Bilder der Basisvektoren bestimmen, also die Bilder von [mm] \pmat{ 1 & 0 & 0 \\ 0 & 0 & 0 }[/mm] [/mm] , [mm][mm] \pmat{ 0 & 1 & 0 \\ 0 & 0 & 0 }, \pmat{ 0 & 0 & 1 \\ 0 & 0 & 0 },\pmat{ 0 & 0 & 0 \\ 1 & 0 & 0 },\pmat{ 0 & 0 & 0 \\ 0 & 1 & 0 },\pmat{ 0 & 0 & 0 \\ 0 & 0 & 1 }. [/mm]

Die Ergebnisse jeweils als Linearkombination von [mm] \pmat{ 1 & 0 \\ 0 & 0 },\pmat{ 0 & 1 \\ 0 & 0 },\pmat{ 0 & \bruch{1}{2} \\ \bruch{1}{2} & 0 },\pmat{ 0 & \bruch{1}{2} \\ -\bruch{1}{2} & 0 } [/mm] schreiben, die Koeffizienten in einen Spaltenvektor "stapeln". Das ist dann der Eintrag der jeweiligen Spalte der Darstellungsmatrix.

Gruß v. Angela


Bezug
                
Bezug
Abbildungsmatrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:14 Mi 09.06.2010
Autor: lausch

Okay dann hier kurz meine bisherigen Ideen ;)
Ich habe die Elemente der Basis nach Abbildungsvorschrift mit A multipliziert.
Ich bekomme 2x2 Matrizen als Ergebnis. So zum Beispiel [mm] \pmat{ 1 & -3 \\ 0 & 0 } [/mm] als Ergebnis des ersten Basiselements. Ist mein Vorgehen soweit richtig?



Bezug
                        
Bezug
Abbildungsmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Mi 09.06.2010
Autor: fred97


> Okay dann hier kurz meine bisherigen Ideen ;)
>  Ich habe die Elemente der Basis nach Abbildungsvorschrift
> mit A multipliziert.
>  Ich bekomme 2x2 Matrizen als Ergebnis. So zum Beispiel
> [mm]\pmat{ 1 & -3 \\ 0 & 0 }[/mm] als Ergebnis des ersten
> Basiselements. Ist mein Vorgehen soweit richtig?

Ja. Nun schreibe diese Matrix als linearkombination der Basiselemente von

       $ [mm] C:=(\pmat{ 1 & 0 \\ 0 & 0 },\pmat{ 0 & 1 \\ 0 & 0 },\pmat{ 0 & \bruch{1}{2} \\ \bruch{1}{2} & 0 },\pmat{ 0 & \bruch{1}{2} \\ -\bruch{1}{2} & 0 }) [/mm] $

Die Elemente in C bez. ich der Reihe nach mit [mm] C_1, [/mm] .., [mm] C_4 [/mm]

Dann ist

       [mm]\pmat{ 1 & -3 \\ 0 & 0 }= 1*C_1-3*C_2+0*C_3+0*C_4[/mm]

Die erste Spalte der gesuchten Abb.-Matrix ist also

[mm] \vektor{1 \\ -3 \\ 0 \\ 0} [/mm]

Jetzt machst Du weiter

FRED


>  
>  


Bezug
                                
Bezug
Abbildungsmatrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:08 Mi 09.06.2010
Autor: lausch

ach super, sah alles mal wieder viel komplizierter aus als es letztendlich ist.
vielen dank an euch beide

Bezug
                                        
Bezug
Abbildungsmatrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:31 Mi 09.06.2010
Autor: lausch

eine letzte frage habe ich dann aber doch noch.

und zwar weiß ich nicht wie ich z.B. [mm] \pmat{ 0 & 0 \\ 1 & -3 } [/mm] mithilfe der Basisvektoren von C darstellen soll?
Der Eintrag 2,2 ist ja immer leer bei den elementen von c.

Bezug
                                                
Bezug
Abbildungsmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 Mi 09.06.2010
Autor: fred97


> eine letzte frage habe ich dann aber doch noch.
>  
> und zwar weiß ich nicht wie ich z.B. [mm]\pmat{ 0 & 0 \\ 1 & -3 }[/mm]
> mithilfe der Basisvektoren von C darstellen soll?
>  Der Eintrag 2,2 ist ja immer leer bei den elementen von c.

Stimmt, das ist mir gar nicht aufgefallen.

Das kann nur daran liegen, dass Du oder der Aufgabensteller die Basis C falsch angegeben hat.

Das:

$ [mm] C:=(\pmat{ 1 & 0 \\ 0 & 0 },\pmat{ 0 & 1 \\ 0 & 0 },\pmat{ 0 & \bruch{1}{2} \\ \bruch{1}{2} & 0 },\pmat{ 0 & \bruch{1}{2} \\ -\bruch{1}{2} & 0 }) [/mm] $

ist jedenfalls keine Basis von C

FRED

Bezug
                                                        
Bezug
Abbildungsmatrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:43 Mi 09.06.2010
Autor: lausch

ja komisch. da werd ich mich dann mal drum kümmern. danke nochmal

Bezug
                                                                
Bezug
Abbildungsmatrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:47 Mi 09.06.2010
Autor: lausch

sorry falsch abgeschrieben ;) fehler lag bei mir

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]