matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenAbbildungsmatrix singulär
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Abbildungen und Matrizen" - Abbildungsmatrix singulär
Abbildungsmatrix singulär < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungsmatrix singulär: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:23 Mo 02.08.2010
Autor: krekru

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

im Grunde quält mich nur eine Frage :

ich habe eine abbildung vom [mm] R^4 [/mm] -> [mm] R^4 [/mm] .

meine abbildungsmatrix sieht so aus:

0  1  0  0
1  0  0  0
0  0 -1  1
0  0  1 -1

sie ist doch singulär,weil sich die letzten beiden spalten auslöschen,sprich eine verschwindet ?... es ist schon spät und ich überseh wohl irgendwas... aber... falls sie singulär ist: hat sie dann  eine spalte oder eine zeile weniger?

ich komme da noch etwas durcheinander... denn wenn sie ien spalte weniger hat, ist sie nicht injektiv,wenn sie eine zeile weniger hat ist sie nicht surjektiv...

bitte klärt mich auf,falls ihr mein müdes kauderwelsch versteht...

lg aus hamburg

        
Bezug
Abbildungsmatrix singulär: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:28 Mo 02.08.2010
Autor: krekru

nun habe ich folgendes gefunden:

Ranf (M ) = dim(Bild(M))

damit kann ich insoweit was anfangen weil ich weiss, dass die dimension des bildes die zeilenzahl m ist. bzw ,falls sie eine zeile weniger hat,da singulär eben Rang (M) = m-1...

nun bin ich aber verwirrter als vorher... es heisst doch ,dass eine abbildung folgende eigenschaften hat:

rangt (M) = n = anzahl spalten = > injektiv
rang(M)   = m = anzahl zeilen   = > surjektiv

wie kann  eine abbildungsmatrix nun überhaupt eine spalte weniger haben, wenn der rang sich doch über obige gleichung definiert ? :(?

bin SEHR durcheinander.... kann mich jemand ordnen? :/

Bezug
        
Bezug
Abbildungsmatrix singulär: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Mo 02.08.2010
Autor: Gonozal_IX

Huhu,

eigentlich ist es ganz einfach, es gilt:

Rang = Zeilenrang = Spaltenrang

Wobei der Zeilenrang die Anzahl der linear unabhängigen Zeilen und der Spaltenrang die Anzahl der linear unabhängigen Spalten ist. Diese Anzahl ist immer identisch und heißt "Rang der Matrix".
Eine Matrix hat vollen Zeilenrang, wenn Anzahl der Zeilen = Zeilenrang analog hat sie vollen Spaltenrang, wenn Anzahl der Spalten = Spaltenrang.

Eine Matrix hat vollen Rang, wenn sie vollen Zeilenrang UND vollen Spaltenrang hat.

Eine Matrix heißt nun singulär, wenn sie NICHT den vollen Rang hat.

Insbesondere heißt das also, dass eine NICHT quadratische Matrix NIE vollen Rang haben kann und damit IMMER singulär ist.

Später kommt noch hinzu, dass eine Singuläre Matrix eine Determinante gleich Null hat, das kann man dann mit allem obigen auch noch verbinden.

MFG;
Gono.

Bezug
                
Bezug
Abbildungsmatrix singulär: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:21 Di 03.08.2010
Autor: krekru

hey=)

gut,soweit "klar"

nun habe ich aber ein abbildungsmatrix :

[mm] \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0&0&0&1 \end{pmatrix} [/mm]

vllt steckt mein kopf irgendwie fest,aber ich hab ein problem mit dem vorgehen bei abbildungsmatrizen =)
da gibt es eine nullspalte und zeile...
dh ich streiche beide und habe eine 3x3 matrix...
und die abbildungsmatrix ist demnach nunsingulär oder regulär ?
oder streiche ich die bei abbildungsmatrizen garnicht ? das würde für mich mehr sinn machen, denn sonst könnt ich ja mit 4x1 vektoren nicht mehr multiplizieren ...

im grunde ist klar,wann eine matrix singulär und regulär ist..aber gerade steh ich etwas auf dem schlauch:)

also zum schluss: ich würde sagen ich streiche nicht,sie ist singulär und ich führe ganz normal alle matrix vektor operationen mit dieser matrix oben aus, ungeachtet ihrer nullspalte etc....:)


Bezug
                        
Bezug
Abbildungsmatrix singulär: Antwort
Status: (Antwort) fertig Status 
Datum: 13:27 Di 03.08.2010
Autor: fred97


> hey=)
>  
> gut,soweit "klar"
>  
> nun habe ich aber ein abbildungsmatrix :
>  
> [mm]\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0&0&0&1 \end{pmatrix} [/mm]
>  
> vllt steckt mein kopf irgendwie fest,aber ich hab ein
> problem mit dem vorgehen bei abbildungsmatrizen =)
> da gibt es eine nullspalte und zeile...
>  dh ich streiche beide



> Warum ? wozu ? mit welcher Berechtigung ?

und habe eine 3x3 matrix...

>  und die abbildungsmatrix ist demnach nunsingulär oder
> regulär ?


Dies Matrix





$ [mm] \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0&0&0&1 \end{pmatrix} [/mm] $



ist singulär.


>  oder streiche ich die bei abbildungsmatrizen garnicht ?

nein, da streicht man nichts. Grün streichen ist auch nicht sinnvoll


> das würde für mich mehr sinn machen, denn sonst könnt
> ich ja mit 4x1 vektoren nicht mehr multiplizieren ...
>  
> im grunde ist klar,wann eine matrix singulär und regulär
> ist..aber gerade steh ich etwas auf dem schlauch:)
>  
> also zum schluss: ich würde sagen ich streiche nicht,sie
> ist singulär und ich führe ganz normal alle matrix vektor
> operationen mit dieser matrix oben aus, ungeachtet ihrer
> nullspalte etc....:)


Das ist eine gute idee

FRED

>  


Bezug
                                
Bezug
Abbildungsmatrix singulär: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:58 Di 03.08.2010
Autor: krekru

danke:) alles klar....

konnte nun alle aufgaben lösen=)

lg krekru

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]