Abbildungsmatrix < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Betrachten Sie den Körper [mm] \IC [/mm] der komplexen Zahlen als Vektorraum über [mm] \IR. [/mm] In [mm] \IC [/mm] seien zwei Basen gegeben A={(1,i)}, B={(1+i,1+2i)}
(i) Zeihen Sie, dass die Abbildung [mm] L:\IC \to \IC [/mm] vermöge [mm] L(z)=\overline{z} [/mm] linear ist.
(ii) Bestimmen Sie [mm] M_{A}^{A}(L) [/mm] und [mm] M^{B}_{B}(L).
[/mm]
(iii) Bestimmen Sie [mm] M_{A}^{B}(L) [/mm] und [mm] M^{A}_{B}(L). [/mm] Verifizieren Sie [mm] M_{A}^{B}(L) [/mm] und [mm] M^{A}_{B}(L)^{-1}. [/mm] |
Hallo an alle,
also Teilaufgabe (i) ist klar, muss man ja nur die Eigensaften prüfen...
leider habe ein Verständisproblem der Teigaufgabe (ii) und zwar haben wir eine Abbildung [mm] L:\IC \to \IC [/mm] mit den Basen A={(1,i)}, B={(1+i,1+2i)}. gehe ich richtig in der annahme, dass z.B. für die Base A einfach A={(1,i)}={(a,b)} also mit [mm] z=a+ib=\vektor{a \\ b} [/mm] ist. ich also theoretisch im [mm] \IR^{2} [/mm] bin??
Also mein bishieriger Lösungsweg:
[mm] L(\vektor{1 \\ i})=\vektor{1 \\ -i}=1+i*(-i)=2=\vektor{2 \\ 0}
[/mm]
[mm] L(\vektor{1+i \\ 1+2i})=\vektor{1+i \\ -1-2i}=1+i+(-1-2i)=3=\vektor{3 \\ 0}
[/mm]
Wäre nett wenn mir hier jemand sagen könnte ob das richtig ist oder mir ansonsten einen richtungshinweis geben könnte.
Danke ;)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
> Betrachten Sie den Körper [mm]\IC[/mm] der komplexen Zahlen als
> Vektorraum über [mm]\IR.[/mm] In [mm]\IC[/mm] seien zwei Basen gegeben
> A={(1,i)}, B={(1+i,1+2i)}
Hallo,
.
Ich nehme an, daß es in Deiner Aufgabenstellung einen Tippfehler gibt.
Es sollte sicher heißen
A:=(1,i) oder [mm] A:=\{1,i\} [/mm] und
B:=(1+i, 1+2i) oder [mm] B:=\{1+i,1+2i\}.
[/mm]
Es sind hier keine Zweitupel gemeint!
[mm] \IC [/mm] hat als VR über [mm] \IR [/mm] betrachtet die Dimension 2.
Deshalb enthält jede der angebenen Basen zwei Elemente.
> (i) Zeihen Sie, dass die Abbildung [mm]L:\IC \to \IC[/mm] vermöge
> [mm]L(z)=\overline{z}[/mm] linear ist.
> (ii) Bestimmen Sie [mm]M_{A}^{A}(L)[/mm] und [mm]M^{B}_{B}(L).[/mm]
> (iii) Bestimmen Sie [mm]M_{A}^{B}(L)[/mm] und [mm]M^{A}_{B}(L).[/mm]
> Verifizieren Sie [mm]M_{A}^{B}(L)[/mm] und [mm]M^{A}_{B}(L)^{-1}.[/mm]
> Hallo an alle,
>
> leider habe ein Verständisproblem der Teigaufgabe (ii)
> und zwar haben wir eine Abbildung [mm]L:\IC \to \IC[/mm] mit den
> Basen A={(1,i)}, B={(1+i,1+2i)}. gehe ich richtig in der
> annahme, dass z.B. für die Base Basis A
eine Base ist eine Cousine oder eine eine Lauge (o.ä.)
> einfach
> A={(1,i)}={(a,b)} also mit [mm]z=a+ib=\vektor{a \\ b}[/mm] ist. ich
> also theoretisch im [mm]\IR^{2}[/mm] bin??
Nein. (Du bewegst Dich mit Deinem Tun auch eher noch im [mm] \IC^2)
[/mm]
Sprüchlein:
in den Spalten der Matrix [mm] M_{A}^{A}(L) [/mm] stehen die Bilder der Basisvektoren von A in Koordinaten bzgl A.
Konsequenz: die beiden basisvektoren von A sind 1 und i. Berechnen müssen wir also
L(1)= 1= 1*1 + 0*i [mm] =\vektor{1\\0}_{(A)} [/mm] .
Dieser Vektor des [mm] \IR^2 [/mm] ist die erste Spalte der gesuchten Matrix.
L(i)= [mm] -i=0*1+(-1)*i=\vektor{0\\-1} [/mm] liefert die zweite Spalte.
Für die Basis B mußt Du dann die Bilder entsprechend als Linearkombi der Basisvektoren von B schreiben und mit den Koeffizienten dann den Koordinatenvektor aufstellen.
Gruß v. Angela
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:29 Mi 02.06.2010 | Autor: | Math_Loser |
Leider war meine Angaben meinerseits kein Tippfehler, denn auf dem Aufgabenblatt steht es genauso, was mich ebenso irritierte.
Aber ich bedanke mich für die schnelle Antwort :)
|
|
|
|