matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieAbbildungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Topologie und Geometrie" - Abbildungen
Abbildungen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 Mo 17.01.2011
Autor: moerni

Aufgabe
Sei G [mm] \subset \mathbb{R}^n [/mm] offen und beschränkt, f eine stetige Abbildung f: [mm] \overline{G} \to \mathbb{R}^n, f(\overline{G}) \subset \overline{G}, [/mm] f(x)=x auf [mm] \partial [/mm] G.
Zeige: [mm] f(\overline{G})=\overline{G} [/mm]

Hallo.

Ich sitze bei dieser Aufgabe leider völlig im Dunkeln. Ich habe leider keine Ahnung, wie ich das beweisen kann oder welche Sätze mir dabei helfen könnten. Thematisch ist diese Aufgabe aus dem Bereich Topologie / Differentialtopologie / Funktionentheorie / Differentialgeometrie.

Hat jemand vielleicht einen Ansatz oder eine Idee für mich?

Darüber wäre ich sehr dankbar,
lg moerni

        
Bezug
Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:24 Fr 21.01.2011
Autor: rainerS

Hallo!

> Sei G [mm]\subset \mathbb{R}^n[/mm] offen und beschränkt, f eine
> stetige Abbildung f: [mm]\overline{G} \to \mathbb{R}^n, f(\overline{G}) \subset \overline{G},[/mm]
> f(x)=x auf [mm]\partial[/mm] G.
> Zeige: [mm]f(\overline{G})=\overline{G}[/mm]
>  Hallo.
>  
> Ich sitze bei dieser Aufgabe leider völlig im Dunkeln. Ich
> habe leider keine Ahnung, wie ich das beweisen kann oder
> welche Sätze mir dabei helfen könnten. Thematisch ist
> diese Aufgabe aus dem Bereich Topologie /
> Differentialtopologie / Funktionentheorie /
> Differentialgeometrie.
>  
> Hat jemand vielleicht einen Ansatz oder eine Idee für
> mich?

Ein paar Ideen:

1. [mm] $\overline{G}$ [/mm] ist kompakt, daher ist [mm] $f(\overline{G})$ [/mm] kompakt.

2. [mm] $f^{-1}(G)$ [/mm] offen und daher eine offene Teilmenge von G.

3. Die Bedingung $f(x)=x$ auf [mm] $\partial [/mm] G$ bedeutet, dass [mm] $f(\partial G)=\partial [/mm] G$ gilt. Also ist

[mm] f(\overline{G}) = f(G\cup \partial G) = f(G)\cup f(\partial G) = f(G)\cup\partial G [/mm] .

Wenn du zeigen kannst, dass $G [mm] \subset [/mm] f(G)$ gilt, so folgt die Behauptung.

Viele Grüße
   Rainer



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]