matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenAbbildung mit Matrix * Vektor
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Abbildung mit Matrix * Vektor
Abbildung mit Matrix * Vektor < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung mit Matrix * Vektor: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 07:42 Do 12.07.2012
Autor: Vairus666

Aufgabe
(a) Seien (V,+,*) und (W,+,*) zwei endlich dimensionale R-Vektorräume. Weiter sei {v1,...,vn} eine Basis von V.
Zeigen sie : Es gibt für beliebige w1,...,wn aus W genau eine lineare Abbildung f:V nach W mit f(vi)=wi für i={1,...,n}.

(b) Es seien die Vektoren v1=(0,1,1) v2=(1,1,-1) v3=(1,lambda,0) w1=(1,0,2) w2=(-1,-1,1) w3=(0,-1,3) aus [mm] R^3 [/mm] gegeben.
Bestimmen sie alle lambda aus R, für die es eine lineare Abbildung [mm] f:R^3 [/mm] nach [mm] R^3 [/mm] mit den Eigenschaften f(v1)=w1 f(v2)=w2 f(v3)=w3 gibt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Zusammen,

also zu Aufgabe (a) weiß ich leider nichts.
Aufgabe (b): ich würde mal behaupten, dass das ganze nur mit einer Matrix*Vektor Operation funktioniert. Also kann ich doch eine Matrix 3*3 mit Einträgen a bis i nehmen und an die Vektoren dranpacken. Dann erhalte ich diese 9 Gleichungen:
1) 1=b+c 2) 0=e+f 3) 2=h+i 4) -1=a+b-c 5) -1=d+e-f 6) 1=g+h-i
7) 0=a+lambda*b 8) -1=d+lambda*e 9) 3=g+lambda*h
So jetzt kann ich doch Gleichungen 1 bis 6 nutzen um a,b,d,e,g,h zu bestimmen und damit alle Lambda zu erhalten oder ? Ich hoffe ich bin hier nicht komplett auf dem Holzweg.  

        
Bezug
Abbildung mit Matrix * Vektor: zu a)
Status: (Antwort) fertig Status 
Datum: 09:58 Do 12.07.2012
Autor: schachuzipus

Hallo Vairus666,

nur kurz zu a), da ich auf dem Sprung bin ...


> (a) Seien (V,+,*) und (W,+,*) zwei endlich dimensionale
> R-Vektorräume. Weiter sei {v1,...,vn} eine Basis von V.
>  Zeigen sie : Es gibt für beliebige w1,...,wn aus W genau
> eine lineare Abbildung f:V nach W mit f(vi)=wi für
> i={1,...,n}.
>  

.

>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo Zusammen,
>  
> also zu Aufgabe (a) weiß ich leider nichts.

Also [mm]V[/mm] ist nach Vor. n-dimensional.

Für jedes [mm]v\in V[/mm] gibt es eind. best. [mm]\lambda_1,...,\lambda_n\in\IR[/mm] mit [mm]v=\sum\limits_{k=1}^n\lambda_k\cdot{}v_k[/mm]

Warum?

Nun definiere [mm]f:V\to W, v\mapsto f(v):=\sum\limits_{k=1}^n\lambda_k\cdot{}w_k[/mm]

Damit ist schon mal [mm]f(v_i)=w_i[/mm] für [mm]i=1,...,n[/mm]

Nun kommt dein Part:

Zeige, dass [mm]f[/mm] linear ist und dass [mm]f[/mm] eindeutig ist.

Für letzteres nimm an, dass es ein [mm]g:V\to W[/mm] mit denselben Eigenschaften gibt und zeige, dass dann [mm]f=g[/mm] gelten muss.

Gruß

schachuzipus


Bezug
        
Bezug
Abbildung mit Matrix * Vektor: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:20 Sa 14.07.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]