matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe ZahlenAbbildung als Verkettung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "komplexe Zahlen" - Abbildung als Verkettung
Abbildung als Verkettung < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung als Verkettung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 So 01.03.2009
Autor: kushkush

Aufgabe
  Gegeben ist die Abbildung f: [mm] C\{-i} [/mm] -> C mit f(z) = w = [mm] \frac{1}{z+i} [/mm]
d) Beschreibe die Abbildung f als Verkettung einfacher geometrischer Abbildungen.

Guten Abend,

Die Verkettung wäre: Translation, Spiegelung am Einheitskreis und Drehstreckung...



Ich habe diese Frage in keinem anderen Forum gestellt und bin für jede Antwort dankbar.

        
Bezug
Abbildung als Verkettung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:55 So 01.03.2009
Autor: schachuzipus

Hallo kushkush,

ohne dass du uns die Abbildung f verrätst, ist das schwer zu sagen ...

LG

schachuzipus

Bezug
                
Bezug
Abbildung als Verkettung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:16 So 01.03.2009
Autor: kushkush

Hi schachuzipus,


Danke für den Hinweis

Bezug
        
Bezug
Abbildung als Verkettung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 So 01.03.2009
Autor: Marcel

Hallo,

>  Gegeben ist die Abbildung f: [mm]C\{-i}[/mm] -> C mit f(z) = w =

> [mm]\frac{1}{z+i}[/mm]
>  d) Beschreibe die Abbildung f als Verkettung einfacher
> geometrischer Abbildungen.
>  Guten Abend,
>  
> Die Verkettung wäre: Translation, Spiegelung am
> Einheitskreis und Drehstreckung...

ich kenne den Begriff der Stürzung für die Funktion $z [mm] \mapsto [/mm] 1/z$ ([]Seite 4 von hier), das wird wohl Deiner Spiegelung am Kreis entsprechen.

Welche Drehstreckung siehst Du denn hier? Natürlich kann man auch $z [mm] \mapsto [/mm] z=1*z$ als Drehstreckung bezeichnen, aber eigentlich wird der Punkt [mm] $z\,$ [/mm] weder gedreht noch gestreckt, dass [mm] $z\,$ [/mm] bleibt 'unverändert'.

Also $z [mm] \mapsto f(z)=\frac{1}{z+i}$ [/mm] läßt sich mit $g(h):=1/h$ und $h(z):=z+i$ schreiben als $f=g [mm] \circ h\,.$ [/mm] Also:
Welche der Nummern 1.,2.,3.,4. aus obigem Link kommt bei [mm] $\,f$ [/mm] wirklich zum Tragen?

Gruß,
Marcel

Bezug
                
Bezug
Abbildung als Verkettung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:50 So 01.03.2009
Autor: kushkush

Hi Marcel,


nur die Translation(#1) und Inversion(#4) kommen wirklich zum Tragen...


es gibt auch noch die "Reziprokfunktion" [mm] z->w=z^{-1} [/mm] ; ist das dasselbe wie die Inversion ?

Bezug
                        
Bezug
Abbildung als Verkettung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:33 So 01.03.2009
Autor: Marcel

Hallo,

> Hi Marcel,
>  
>
> nur die Translation(#1) und Inversion(#4) kommen wirklich
> zum Tragen...

richtig!

> es gibt auch noch die "Reziprokfunktion" [mm]z->w=z^{-1}[/mm] ; ist
> das dasselbe wie die Inversion ?

Offensichtlich, da [mm] $z^{-1}=1/z$ [/mm] ($z [mm] \not=0$). [/mm]

Gruß,
Marcel

Bezug
                                
Bezug
Abbildung als Verkettung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:37 So 01.03.2009
Autor: kushkush

Danke Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]