matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAbbildung K-linear
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Abbildung K-linear
Abbildung K-linear < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung K-linear: Verständnis und Tipp
Status: (Frage) überfällig Status 
Datum: 18:43 Di 21.11.2006
Autor: kampfsocke

Aufgabe
Sei K ein Körper. Sei  [mm] t:M_{n}(K) \to [/mm] K  K-linear und es gelte für alle A,B [mm] \in M_{n}(K): [/mm] t(AB)=t(BA).
Zeige: [mm] \exists [/mm] r [mm] \in\IR, [/mm] sodass für alle A [mm] \in M_{n}(K) [/mm] gilt t(A)=rTr(A).

Hallo allerseits,

ich kann mit der Aufgabe überhaupt nichts anfangen.


Eine Matrix wird auf eine Zahl abgebildet. Denn nichts anderes ist ja K oder?

t K-linear sagt mir nach Definition:

t(x+y)=t(x)+t(y)   (wobei hier x und y Matrizen sein sollten)
t(rx)=r*t(x)

Die Spur von A ist [mm] \summe_{i=1}^{n} a_{ii} [/mm]

Und die Zahl auf die A durch t abgebildet wird soll gleich r mal der Spur von A sein.

Ich hab keine Idee wie ich ansetzen kann!
Für Tipps, Hinweise und Denkanstöße bin sehr Dankbar!

Viele Grüße,
Sara

        
Bezug
Abbildung K-linear: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:18 Mi 22.11.2006
Autor: otto.euler

Sind A,B ähnlich, also [mm] A=SBS^{-1}, [/mm] so t(A) = t(B).
Beweis: t(A) = [mm] t(SBS^{-1}) [/mm] = [mm] t((SB)S^{-1}) [/mm] = [mm] t(S^{-1}(SB)) [/mm] = [mm] t(S^{-1}SB) [/mm] = t(B)

Hattet ihr schon das charakteristische Polynom einer Abbildung?

Vielleicht hilft auch der Hinweis, dass mich die Aufgabe an Lie-Algebren erinnert.

Bezug
                
Bezug
Abbildung K-linear: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:39 Do 23.11.2006
Autor: kampfsocke

Die Aufgabe sollen Erstis nach 4 Wochen Studium loesen.
Ich hab jetzt irgendwelchen groben Zusammenhaenge hingeschustert, mal sehen.
Sollte sich noch jemand fuer die Loesung interessieren, kann ich morgen gerne noch die Musterloesung posten.

Dank fuer's Ueberlegen!

Viele Gruesse,  
Sara

Bezug
        
Bezug
Abbildung K-linear: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Fr 24.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]