matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAbbildung, Bild, Urbild
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Abbildung, Bild, Urbild
Abbildung, Bild, Urbild < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung, Bild, Urbild: Aufgabe 1
Status: (Frage) überfällig Status 
Datum: 15:15 Sa 04.11.2006
Autor: wieZzZel

Aufgabe
Sei f: X --> Y eine beliebige Abb. [mm] (f\subset [/mm] X x Y), f(A) bezeichnet das Bild von A [mm] \subset [/mm] X und [mm] f^{-1}(A') [/mm] das Urbild A' [mm] \subset [/mm] Y.

a) Zeigen Sie: Aus A' [mm] \subset [/mm] B' [mm] \subset [/mm] Y  folgt [mm] f^{-1}(A') \subset f^{-1}(B'). [/mm]

b) Überprüfen Sie folgende Inklusionen

[mm] f(f^{-1}(A')) \supset [/mm] A'  (A' [mm] \subset [/mm] f(X) [mm] \subset [/mm] Y)
[mm] f^{-1}(f(A)) \supset [/mm] A   (A [mm] \subset f^{-1}(Y) \subset [/mm] X)

Prüfen Sie, ob die Gleichheit gilt (oder finden Sie je ein Gegenbeispiel)

c) Folgt aus [mm] f^{-1}(A') [/mm] = [mm] \emptyset [/mm] , dass A'= [mm] \emptyset [/mm] ?

d) Zeigen Sie [mm] f^{-1}(A' \cap [/mm] B') = [mm] f^{-1}(A') \cap f^{-1}(B'), [/mm] wenn f eine eindeutige Abb (Funktion) ist.
   Welche Beziehung gilt, wenn f  nicht eindeutig ist?

Hallo und ein schönes Wochenende allen zusammen.

(Bin neu im Forum und im Studium (1. Semester) und entschuldige mich für eventuelle formale Fehler)

Dies ist eine Teilaufgabe der Algebra Hausaufgaben, die mir Kopfzerbrechen bereitet, sehe kaum einen Ansatz für die Lösungen.

Würde mich freuen, wenn mir jemand dabei helfen könnte.

Hier meine Überlegungen:

a) für mich eine Verkettung, von daher logisch (sicher keine mathematisch tragbare Begründung)

b) die erste Fkt ist für mich die Identitätsabb. von A' und die Zweite von A, aber wie ich das jetzt begründe (im Falle, es stimmt überhaupt), weis ich nicht.

c) nein, da z.B. f(x)= [mm] \bruch{2x}{2-x} [/mm] für x=2 keine Lösung für f(x) ergibt, aber das x=2 ist.

d) sehe es auch (trügerisch) als selbstverständlich, dass das so ist.



Also vielen Dank an euch für eure Hilfe

Tschüß und ein schönes Wochenende

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Abbildung, Bild, Urbild: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:36 So 05.11.2006
Autor: wieZzZel

Hallo nochmal.

Falls ihr nicht alles wisst, wäre mir schon mit wenigen Tipps geholfen (denke ich mal).

Danke und Tschüß

Bezug
        
Bezug
Abbildung, Bild, Urbild: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 Mo 06.11.2006
Autor: DaMenge

Hi,

du solltest dich dringend mit dem Begriffen Bild und Urbild von Abbildungen beschaeftigen.
Also es handelt sich hier nicht um bijektive Funktionen oder sowas, sondern Abbildungen im allgemeinen.
Also ein element x aus X hat zwar ein eindeutiges Bild f(x) aber nicht jedes Element y aus Y hat ein eindeutiges (oder ueberhaupt ein) Urbild [mm] f^{-1}(y) [/mm] ..


zu a) setze so an : sei y aus A' beliebig gewaehlt, damit ist y auch in B'.
jedes Element x aus [mm] f^{-1}(y) [/mm] hat als Bild natuerlich y und deshalb liegt x auch in [mm] f^{-1}(B') [/mm] ....

zu b) schau dir doch mal nicht-injektive Abbildungen an und mal dir mal ein paar Beispiele auf oder sowas..

zu c) deine Begruendung dafuer ist falsch, denn es geht darum, dass das Urbild eines Funktionswertes leer sein soll - also ein Funktionswert wird nicht getroffen (nicht-surjektiv) - der Funktionswert (bzw die Menge von Funktionswerten=A') muss deshalb natuerlich nicht leer sein, wenn die abbildung nicht-surjektiv ist.
(gegenbeispiel reicht als begruendung)

zu d) da steht nicht umsonst eine unterscheidung zw eindeutigen (bijektiven) Abbildungen und keinen - wo findest du denn einen Unterschied ?!?

viele gruesse
DaMenge

Bezug
                
Bezug
Abbildung, Bild, Urbild: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:12 Mo 06.11.2006
Autor: Sashman

Moin WieZzZel!

Schau dir vor der Bearbeitung der Teilaufgabe d) nocheinmal an, welche Abbildungen ihr als eindeutig gekennzeichnet habt.

Bei mir hies eindeutig nur surjektiv und nicht wie in obiger Antwort bijektiv.

eindeutig   (surjektiv):

Sei $f: [mm] A\to [/mm] B$ eine Abbildung:
Dann heist f eindeutig, wenn jedem [mm] $b\in [/mm] B$ ein Wert [mm] $a\in [/mm] A$ mit $f(a)=b$ zugewiesen werden kann.

[mm] $\forall b\in [/mm] B$  [mm] $\exists a\in [/mm] A$ : $b:=f(a)$

Injektiv:

Sei [mm] $f:A\to [/mm] B$ eine Abbildung. Dann heißt $f$ injektiv, wenn verschiedene Elemente von $A$ verschiedene Funktionswerte in $B$ haben.

[mm] $\forall a_1,a_2\in [/mm] A$ : [mm] $a_1\not= a_2\Rightarrow f(a_1)\not= f(a_2)$ [/mm]


eineindeutig oder umkehrbar eindeutig (bijektiv)

Sei [mm] $f:A\to [/mm] B$ eine Abbildung. dann heißt $f$ eineindeutig wen $f$ bijektiv ist. Also wenn $f$ injektiv und surjektiv ist.

Kann aber auch sein das ihr das anders definiert habt.

MfG
Sashman

Bezug
                        
Bezug
Abbildung, Bild, Urbild: stimmt !
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:28 Mo 06.11.2006
Autor: DaMenge

oha - danke fuer die ergaenzung !

hatte eben vor der Mittagspause doch glatt uebersehen, dass da gar nicht eineindeutig gemeint war^^

Aber dennoch bleibt die Fragestellung suggestiv und man sollte sich genau dazu mal gedanken machen...

viele Gruesse
DaMenge

Bezug
                                
Bezug
Abbildung, Bild, Urbild: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:08 Mo 06.11.2006
Autor: wieZzZel

Hallo und erstmal Danke für eure Hilfe.

Aber nochmal ein paar Fragen.

zu a) habe ein beliebiges y [mm] \in [/mm] A' und somit auch y [mm] \in [/mm] B' und auch y [mm] \in [/mm] Y, aber weiter???

b) helfen mir eure Ausführungen wenig weiter.

c) vielleicht mal ein Gegenbeispiel, weis zwar was gemeint ist, aber wie ich es ausdrücken soll (außer wie ich es oben hatte) weiß ich nicht

d) verstehe ich leider auch nicht.



Also helft mir mal bitte auf die Sprünge.

Danke und Tschüüß

Bezug
                                        
Bezug
Abbildung, Bild, Urbild: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:24 Do 09.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]