matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAbbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Abbildung
Abbildung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:26 So 05.12.2004
Autor: Nadja

Hallo
Kann mir jemand helfen bei dieser Aufgabe

Es sei a=(aij)  [mm] \in [/mm] M(n;K).
Dann wird die Spur von a definiert durch
Spur(a) = a11+a22+....+ann.

i) Zeigen Sie:
(a) Spur(a) + Spur(b) = Spur (a+b) und Spur(ab) = Spur(ba).
(b) Es gibt keine Matrizen a,b  [mm] \in [/mm] M(n;C) mit ab-ba= [mm] \I_{n}. [/mm]

ii) Es sei  [mm] \cal{P} [/mm] der Vektorraum der Polynome über C sowie
D:  [mm] \cal{P} [/mm] -->  [mm] \cal{P} [/mm] die Ableitung
[mm] A(co+c1x+...+cnx^n)=c0x+c1x^2+...+cnx^n1. [/mm]

Zeigen Sie: DA - AD = I.

Ich weiß überhaupt nicht wie ich das zeigen soll. Kann mir jemand ein ansatz geben.

Danke euch
Nadja

Ich habe diese Aufgabe in keinen anderem Forum gestellt.

        
Bezug
Abbildung: 1. Teil
Status: (Antwort) fertig Status 
Datum: 16:19 So 05.12.2004
Autor: Bastiane

Hallo Nadja!
Also nur so ganz spontan zum 1. Teil:

> Es sei a=(aij)  [mm]\in[/mm] M(n;K).
>  Dann wird die Spur von a definiert durch
> Spur(a) = a11+a22+....+ann.
>  
> i) Zeigen Sie:
>  (a) Spur(a) + Spur(b) = Spur (a+b) und Spur(ab) =
> Spur(ba).

Nimm doch einfach zwei Matrizen, "berechne" die Spur (also schreib quasi nur die Definition hin) und addierst sie, dann addierst du die Matrizen und "berechnest" davon die Spur, da kommt dann halt genau das Gleiche raus. Ich glaub', das brauch man wirklich nur hinschreiben.

>  (b) Es gibt keine Matrizen a,b  [mm]\in[/mm] M(n;C) mit ab-ba=
> [mm]\I_{n}. [/mm]

Und hier weiß ich nicht so ganz, was du meinst...
Jedenfalls kann dir zu den anderen Sachen sicher jemand anders weiterhelfen. ;-)

Viele Grüße
Bastiane
[haee]

Bezug
                
Bezug
Abbildung: Frage
Status: (Frage) beantwortet Status 
Datum: 13:57 Mi 08.12.2004
Autor: Sandra21

Wer kann bei den zweiten Teil dieser Aufgabe mir helfen.

Es heißt ab-ba=I(n)    I soll Einheitsmatrix sein


Danke
Sandra

Bezug
                        
Bezug
Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:01 Mi 08.12.2004
Autor: Marc

Hallo Sandra,

> Es heißt ab-ba=I(n)    I soll Einheitsmatrix sein

Vergleiche doch mal die Spuren von AB, BA und I (siehe Aufgabenteil (a)).

Viele Grüße,
Marc

Bezug
        
Bezug
Abbildung: Frage
Status: (Frage) beantwortet Status 
Datum: 13:46 Do 09.12.2004
Autor: Yellowbird

Hallo
Kann mir jemand einen Ansatz für ii) geben, irgendwie komm ich nicht drauf?

Bezug
                
Bezug
Abbildung: Ansatz zu ii)
Status: (Antwort) fertig Status 
Datum: 19:30 Fr 10.12.2004
Autor: wluut

Zuerst war mir auch nicht sofort klar, wie die 2. Aufgabe gemeint ist, du schreibst, dass zu zeigen ist: DA - AD = I.
Mit DA ist wohl NICHT D*A ("D multipliziert mit A") gemeint, denn sonst wäre ja D*A = A*D und damit D*A - A*D = 0  [mm]\not=[/mm] I.

Ich habe die Aufgabe jetzt so verstanden (dann macht es auch Sinn und ich bekomme auch ein Ergebnis):

DA bedeutet: Wende zuerst die Abbildung A auf das Eingabepolynom [mm]p\in\cal{P}[/mm] an, danach leite das Ergebnis ab.
I ist die Identitätsfunktion I(p) = p.

Zu zeigen ist dann also:
D(A(p))-A(D(p))=I(p)=p

Der Rest ist Ausrechnen:
Das macht man entweder mit der "Pünktchen-Schreibweise" oder in der kürzeren Summen-Form:

p kann man ja schreiben als: [mm]c_0+c_1x+c_2x^2+\ldots+c_nx^n= \summe_{i=0}^{n}c_ix^{i}[/mm]

Genauso gilt:

[mm]D(p)=c_1+2c_2x+\ldots+nc_nx^{n-1}= \summe_{i=0}^{n}ic_ix^{i-1}[/mm]

und

[mm]A(p)=c_0x+c_1x^2+\ldots+c_nx^{n+1}= \summe_{i=0}^{n}c_ix^{i+1}[/mm]

Jetzt bleibt nur noch D(A(p)) und A(D(p)) auszurechnen, dann wird man sehen, dass D(A(p))-A(D(p)) = [mm]\summe_{i=0}^{n}c_ix^{i}[/mm] = I(p) = p.

Falls du damit nicht weiter kommst, melde Dich gerne nochmal, die Rechnung habe ich nämlich auch schon gemacht.
Jens

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]