matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisAbbildung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Abbildung
Abbildung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:08 Di 10.01.2006
Autor: erdoes

Servus zusammen,
die Frage die ich habe bezieht sich auf die sogenannte Abbildung.
Und zwar verstehe ich im Moment nicht, wie man anhand des folgenden Satzes erkennt, warum die Abbildungsrichtung gerade von links nach rechts geht und nicht von rechts nach links ?

Der Satz lautet :

jedem x aus X läßt sich eindeutig ein y aus Y zuordnen.

Wäre hier die Abbildungsrichtung nicht x <-- y ?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Für Antworten bedanke ich mich schon jetzt.



        
Bezug
Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 Di 10.01.2006
Autor: Stefan

Hallo!

Nein, warum sollte es andersherum sein?

Nehmen wir mal die Funktion [mm] $f(x)=x^2$. [/mm]

Ich schreibe jetzt mal [mm] $y=x^2$. [/mm]

(Im Folgenden nehme ich an, dass wir alles ganz auf [mm] $\IR$ [/mm] betrachten...)

Und nehmen wir mal an, wir hätten eine Abbildung [mm] $y\mapsto [/mm] x$, die also jedem $y$ ein eindeutiges $x$ zuordnet, so dass [mm] $y=x^2$ [/mm] gilt.

Dann müsste auch etwa $y=4$ so ein $x$ besitzen. Tut es ja auch: $x=2$. Es gilt: [mm] $4=2^2$. [/mm] Aber leider gilt ja auch [mm] $4=(-2)^2$. [/mm]

D.h. wir hätten ohne Weiteres dem $y=4$ auch das $x=-2$ zuordnen können. Die $2$ hatte keine natürliche Berechtigung ausgewählt zu werden, genauso wäre die $-2$ möglich gewesen.

Somit können wir eben nicht in eindeutiger Weise jedem $y$ ein $x$ zuordnen. Es existiert keine eindeutige Abbildung $y [mm] \mapsto [/mm] x$

Eine Abbildung $f$ zeichnet sich dadurch aus, dass es zu jedem $x$ aus dem Definitionsbereich genau ein $y$ aus dem Wertebereich gibt mit $f(x)=y$. Wir haben also eine Abbildung $f: x [mm] \mapsto [/mm] y=f(x)$. Abbildungen, für die es auch eine Abbildung $y [mm] \mapsto [/mm] x$ des Wertebereiches auf den Definitionsbereich gibt (für den es also zu jedem $y [mm] \in [/mm] f(D)$ genau ein $x [mm] \in [/mm] D$ gibt mit $f(x)=y$ und damit eine natürliche Zuordnung $y [mm] \mapsto [/mm] x$), nennt man injektiv. Sie sind, wenn man sie auf den Wertebereich von $f$, den ich mit $f(D)$ bezeichnet habe, umkehrbar.

Etwas klarer? :-)

Liebe Grüße
Stefan

Bezug
                
Bezug
Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:35 Di 10.01.2006
Autor: erdoes

Danke für die Antwort, aber das ist nicht das Problem das ich habe.
Warum zeigt der Pfeil von x nach y und nicht umgekehrt, wenn es in der Abbildungsdefinition folgendermaßen heisst:

1 ) jedem x wird ein y zugeordnet.

Man ordnet doch dem x das y zu, also x <-- y ?



Bezug
                        
Bezug
Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Di 10.01.2006
Autor: Stefan

Hallo!

Nein, es ist genau andersherum. Es wird "in Pfeilrichtung" zugeordnet. Der Pfeil fliegt sozusagen von $x$ nach $y$.

Das ist aber eine reine Konvention (die ich aber sehr intuitiv finde),

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]