matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieA offen => besondere Darst.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Topologie und Geometrie" - A offen => besondere Darst.
A offen => besondere Darst. < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

A offen => besondere Darst.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 Mo 26.04.2010
Autor: Teufel

Aufgabe
Zeige: Ist $A [mm] \subseteq \IR$, [/mm] so lässt sich A als abzählbare Vereinigung paarweise disjunkter, offener Intervalle darstellen, beispielweise als [mm] A=\bigcup_{n \in \IN}^{}(a_n, b_n). [/mm]

Hi!

Die Frage sieht eigentlich nicht so schwierig aus und dass es so sein muss ist auch recht anschaulich. [mm] \IR [/mm] lässt ja nicht viel Spielraum um sich dort eine offene Menge zu schnappen. A kann sein was es will, nicht einmal zusammenhängend, aber im Prinzip ist A doch immer eine Vereinigung offener Intervalle, die man auch so wählen kann, dass man nur disjunkte nimmt.

Und wenn A irgendwelche isolierten Punkte hätte oder solche Geschichten, dann wäre A ja schon nicht mehr offen.

Ich wollte Anfangen mit
A offen [mm] \gdw A=\{x \in \IR | a_0
Hat jemand einen Ansatz, wie ich vernünftig erklären kann, dass A solch eine Darstellung haben muss?

[anon] Teufel

        
Bezug
A offen => besondere Darst.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Mo 26.04.2010
Autor: SEcki


> Hat jemand einen Ansatz, wie ich vernünftig erklären
> kann, dass A solch eine Darstellung haben muss?

Sei x in A, dann gibt es ein Interval mit x in A. Verlängere die Enden des Intervals maximal - warum geht das? Jedes x liegt in einem solchen maximalen Intervall - A ist Vereinigung dieser.

SEcki

Bezug
                
Bezug
A offen => besondere Darst.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:15 Mo 26.04.2010
Autor: Teufel

Hi!

Ok, also wenn x [mm] \in [/mm] A ist, dann liegt x ja in einer eigenen [mm] \varepsilon-Umgebung U_{\varepsilon}(x), [/mm] was ja ein offenes Intervall ist. Innerhalb dieser [mm] \varepsilon-Umgebung [/mm] kann ich mir (zu beiden Seiten hin) immer noch andere Elemente [mm] x_i [/mm] aus [mm] U_{\varepsilon}(x) [/mm] nehmen und darum eine weitere [mm] \varepsilon-Umgebung U_{\varepsilon_i}(x_i) [/mm] legen, sodass  [mm] U_{\varepsilon}(x) \cup U_{\varepsilon_i}(x_i) [/mm] nach "links oder rechts hin" eben breiter als [mm] U_{\varepsilon}(x) [/mm] ist. Dann wählt man sich [mm] U_{\varepsilon}(x) \cup U_{\varepsilon_i}(x_i) [/mm] als neue Umgebung von x und wiederholt das Verfahren, was ja einer Verlängerung des Intervalls um x nach beiden Seiten hin entspricht. Das kann man so lange machen sie es geht, da es ja immer noch Elemente aus A gibt, die in der Umgebung von x liegen.

So?

[anon] Teufel

Bezug
                        
Bezug
A offen => besondere Darst.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Mo 26.04.2010
Autor: SEcki


> So?

Dein Verfahren muss nicht das längste Intervall ergeben - es kann immer breiter werden, der "Limes" aber immer noch drin sein. Du kannst ja eh gleich a, b minimal bzw. maximal wählen mit [m]x\in (a,b)\subset A[/m] (ganz formal sind das Mengen und du nimmst dann Infimum/Supremum).

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]