matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenA^{T} richtig gebildet?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Abbildungen und Matrizen" - A^{T} richtig gebildet?
A^{T} richtig gebildet? < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

A^{T} richtig gebildet?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:38 Mi 09.04.2014
Autor: Teryosas

Aufgabe
A= [mm] \vmat{1 & 2 & 3 \\ 1 & 0 & 1 \\ 2 & 1 & 0 } [/mm]

[mm] A^{T} [/mm] = [mm] \vmat{3 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & 1 & 2} [/mm]

hey,

ich das richtig?


        
Bezug
A^{T} richtig gebildet?: Antwort
Status: (Antwort) fertig Status 
Datum: 11:44 Mi 09.04.2014
Autor: angela.h.b.


> A= [mm]\vmat{1 & 2 & 3 \\ 1 & 0 & 1 \\ 2 & 1 & 0 }[/mm]
>  
> [mm]A^{T}[/mm] = [mm]\vmat{3 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & 1 & 2}[/mm]
>  hey,
>  
> ich das richtig?

Hallo,

nein, das ist nicht richtig.

Bei der transponierten Matrix werden die Spalten von A zu Zeilen, und zwar so, daß das erste Element der Spalte von A das erste Element der Zeile von [mm] A^{T} [/mm] wird.

Es ist also

[mm] A^{T}=\vektor{1&1&2\\2&0&1\\3&1&0}. [/mm]

LG Angela

>  


Bezug
        
Bezug
A^{T} richtig gebildet?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Mi 09.04.2014
Autor: DieAcht

Hallo Teryosas,


Zum Transponieren einer Matrix kannst du auch einfach an der
Diagonale spielen. Die Diagonale bleibt dabei natürlich gleich.

Das kannst du dir auch mal als Algorithmus klar machen. Ich
setze mal [mm] $B:=A^T$. [/mm] Dabei gehst du dann $A$ in zwei Schleifen
durch und setzt [mm] b_{j,i}:=a_{i,j}. [/mm] Das kannst du natürlich noch opti-
mieren, aber das spielt hier zunächst keine Rolle und dient
nur zum Verständnis.

Vielleicht noch drei kleine Aufgaben, damit es dir klar wird:

Transponiere

      [mm] C:=\pmat{ a & b & c \\ d & e & f \\ g & h & i }, [/mm]

      [mm] D:=\pmat{ a & b & c & d \\ e & f & g & h }, [/mm]

      [mm] E:=\pmat{ a & b \\ c & d \\ f & g }. [/mm]


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]