matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraA Selbstadjungiert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - A Selbstadjungiert
A Selbstadjungiert < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

A Selbstadjungiert: Wie ist es richtig?
Status: (Frage) beantwortet Status 
Datum: 16:15 Mi 11.05.2005
Autor: Olek

Tag zusammen.
Ich schreibe erstmal die Aufgabe:
Sei [mm] \IB={(1,2),(0,-1)} [/mm] eine Basis von [mm] \IR^{2} [/mm] und A: [mm] \IR^{2}\to\IR^{2} [/mm] die lineare Abbildung mit [mm] \left[ A \right]_{\IB}= \pmat{ 0 & -1 \\ -9 & 2 } [/mm]
Zeigen sie, dass A bezüglich des Standardskalarproduktes auf [mm] \IR^{2} [/mm] selbstadjungiert ist.

Ich wollte nun zeigen, dass [mm] \left\langle Au|v \right\rangle=\left\langle u|A^{*}v \right\rangle [/mm] wobei u= (1,2) und v=(0,-1). Ich komme sowohl bei [mm] \left\langle Au|v \right\rangle [/mm] als auch bei [mm] \left\langle u|A^{*}v \right\rangle [/mm] auf das Ergebnis 5, so dass die Gleichheit gezeigt ist und bewiesen ist, dass A selbstadjungiert ist.
Ich habe jetzt allerdings jemanden getroffen, der von A die Orthonormalbasis gebildet hat, und dann mit der Übergangsmatrix und deren Inversen eine Matrix berechnet hat, die links unten und rechts oben die gleichen Einträge hatte, so dass es sich um eine Selbstadjungierte handelt.
Ich hoffe ihr habt den zweiten Weg nachvollziehen können und könnt mir vielleicht sagen, was ihr für richtig haltet.
Vielen Dank,
Olek

        
Bezug
A Selbstadjungiert: Antwort (nicht fertig)
Status: (Antwort) noch nicht fertig Status 
Datum: 21:52 Mi 11.05.2005
Autor: choosy

ich halte deinen ansatz für einfacher, würds nur allgemeiner aufschreiben:
Sei [mm] $v=\vektor{x\\y},u=\vektor{a\\b}\in\R^2$ [/mm] bezüglich der gegebenen basis.
dann ist

$<Av,u> = [mm] [/mm]
              = [mm] [/mm]
              = [mm] x [/mm] + [mm] y [/mm]
              = ... =<v,Au>$

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]