matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAWP Beschleunigung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - AWP Beschleunigung
AWP Beschleunigung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

AWP Beschleunigung: Lösungsverfahren
Status: (Frage) beantwortet Status 
Datum: 13:53 Mo 16.05.2011
Autor: likenobody

Aufgabe
Die horizontale Längsbewegung eines Fahrzeugs bei Vollgas lässt sich vereinfacht beschreiben durch das Anfangswertproblem:

[mm] m*\bruch{dv}{dt}=\alpha-\beta*v^{2} [/mm]

[mm] V(0)=v_{0} [/mm]

wobei m die Masse des Fahrzeuges und [mm] \alpha [/mm] > 0 , [mm] \beta [/mm] > 0 konstanten sind. Bestimmen Sie die Geschwindigkeit v(t) für alle t>= 0

Wie kann ich hier vorgehen, mit bernoulli funktioniert es leider nicht. Reccati geht leider auch nicht, da [mm] \alpha [/mm] ja keine funktion ist.

für Hilfe bin ich dankbar

        
Bezug
AWP Beschleunigung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:58 Mo 16.05.2011
Autor: kamaleonti

Hallo,
> Reccati geht leider auch nicht, da [mm]\alpha[/mm] ja
> keine funktion ist.

Wieso das?
Es ist eben ein konstante Funktion, wenn man so will.

>  
> für Hilfe bin ich dankbar

LG

Bezug
        
Bezug
AWP Beschleunigung: Umformen
Status: (Antwort) fertig Status 
Datum: 15:02 Mo 16.05.2011
Autor: Infinit

Hallo likenobody,
diese Riccati-DGL lässt sich in eine DGL 2. Ordnung umformen und aufgrund der konstanten Koeffizienten ist diese DGL sogar lösbar.
Viele Grüße,
Infinit


Bezug
        
Bezug
AWP Beschleunigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 Mo 16.05.2011
Autor: likenobody

Hier nun meine Rechnung mit Riccati und Bernoulli.

v'= [mm] \bruch{\alpha}{m}-\bruch{\beta*v^2}{m} [/mm]

Spezielle Lösung durch erraten:

v = [mm] \phi [/mm] = [mm] \bruch{\wurzel{\alpha}}{\wurzel{\beta}} [/mm]

hieraus folgt dann:

[mm] m(\phi+u)'=\alpha-\beta(\phi+u)^2 [/mm]
[mm] (\phi+u)'= \bruch{\alpha}{m}-\bruch{\beta(\phi+u)^2}{m} [/mm]
[mm] u´=-\phi+\bruch {\alpha}{m}-\bruch{\beta}{m}\phi^2-\bruch{\beta}{m}2\phi*u+\bruch{\beta}{m}u^2 [/mm]

hieraus folgt dann:
[mm] u'=-\bruch{\beta}{m}2\phi*u+\bruch{\beta}{m}u² [/mm]

nach bernoulli folgt hieraus:

v'(t) + [mm] \bruch{\beta}{m}*2\phi*v(t)=\bruch{\beta}{m} [/mm]

homogene LSG:
  

v'(t) + [mm] \bruch{\beta}{m}*2\phi*v(t)=0 [/mm]

....

u= [mm] \bruch{1}{e^-^\bruch{\beta}{m}^*^2^\phi^*^t^+^C} [/mm]

...

ist die lsg bis hierhin korrekt?

Bezug
                
Bezug
AWP Beschleunigung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 Mo 16.05.2011
Autor: MathePower

Hallo likenobody,

> Hier nun meine Rechnung mit Riccati und Bernoulli.
>  
> v'= [mm]\bruch{\alpha}{m}-\bruch{\beta*v^2}{m}[/mm]
>  
> Spezielle Lösung durch erraten:
>  
> v = [mm]\phi[/mm] = [mm]\bruch{\wurzel{\alpha}}{\wurzel{\beta}}[/mm]
>  
> hieraus folgt dann:
>  
> [mm]m(\phi+u)'=\alpha-\beta(\phi+u)^2[/mm]
>  [mm](\phi+u)'= \bruch{\alpha}{m}-\bruch{\beta(\phi+u)^2}{m}[/mm]
>  
> [mm]u´=-\phi+\bruch {\alpha}{m}-\bruch{\beta}{m}\phi^2-\bruch{\beta}{m}2\phi*u+\bruch{\beta}{m}u^2[/mm]


Hier muss es doch lauten:

[mm]u'=-\phi+\bruch {\alpha}{m}-\bruch{\beta}{m}\phi^2-\bruch{\beta}{m}2\phi*u\blue{-}\bruch{\beta}{m}u^2[/mm]


>  
> hieraus folgt dann:
>  [mm]u'=-\bruch{\beta}{m}2\phi*u+\bruch{\beta}{m}u²[/mm]


[mm]u'=-\bruch{\beta}{m}2\phi*u\blue{-}\bruch{\beta}{m}u^{2}[/mm]


>  
> nach bernoulli folgt hieraus:
>  
> v'(t) + [mm]\bruch{\beta}{m}*2\phi*v(t)=\bruch{\beta}{m}[/mm]


Dann folgt mit Bernoulli:

[mm]v'(t) \blue{-} \bruch{\beta}{m}*2\phi*v(t)=\bruch{\beta}{m}[/mm]


>  
> homogene LSG:
>    
>
> v'(t) + [mm]\bruch{\beta}{m}*2\phi*v(t)=0[/mm]
>  
> ....
>  
> u= [mm]\bruch{1}{e^-^\bruch{\beta}{m}^*^2^\phi^*^t^+^C}[/mm]
>  
> ...
>
> ist die lsg bis hierhin korrekt?


Leider nicht, siehe oben.


Gruss
MathePower

Bezug
                        
Bezug
AWP Beschleunigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 Di 05.07.2011
Autor: likenobody

Ich habe nun unter brücksichtigung der tipps das ergebins neu berrechent
die allgemeine lösung der Bernoulli 'DGL ergibt sich nun nach Rücksubstitution zu [mm] u=\bruch{1}{e^{2*\bruch{\beta}{m}*\phi*t}*c+\bruch{\beta}{m}} [/mm]

hieraus folgt die Lösung der Riccati DGL zu:
[mm] v(t)=\bruch{1}{e^{2*\bruch{ß}{m}*\phi*t}*c+\bruch{\beta}{m}}+\bruch{\beta}{m} [/mm]

ist die lösung nun so korrekt?


Bezug
                                
Bezug
AWP Beschleunigung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:36 Di 05.07.2011
Autor: MathePower

Hallo likenobody,

> Ich habe nun unter brücksichtigung der tipps das ergebins
> neu berrechent
>  die allgemeine lösung der Bernoulli 'DGL ergibt sich nun
> nach Rücksubstitution zu
> [mm]u=\bruch{1}{e^{2*\bruch{\beta}{m}*\phi*t}*c+\bruch{\beta}{m}}[/mm]
>  
> hieraus folgt die Lösung der Riccati DGL zu:
>  
> [mm]v(t)=\bruch{1}{e^{2*\bruch{ß}{m}*\phi*t}*c+\bruch{\beta}{m}}+\bruch{\beta}{m}[/mm]
>  
> ist die lösung nun so korrekt?
>  


Die Lösung ist nicht korrekt. [notok]


Gruss
MathePower

Bezug
                                        
Bezug
AWP Beschleunigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:53 Mi 06.07.2011
Autor: likenobody

Die erneute Berechnung fürhte mich nun zu dem Ergebnis:

[mm] v(t)=e^{2\cdot{}\bruch{\beta}{m}\cdot{}\bruch{\wurzel{\alpha}}{\wurzel{\beta}}\cdot{}t}\cdot{}c+\bruch{\wurzel{\alpha}}{\wurzel{\beta}}-\bruch{1}{2}\bruch{\wurzel{\beta}}{\wurzel{\alpha}} [/mm]

ist denn die substitution bzw. die erratene lösung bei der riccati gleichung mit [mm] \bruch{\wurzel{\beta}}{\wurzel{\alpha}} [/mm] korrekt, muss diese nicht von t abhänig sein?

ich weiß bei der aufgabe einfach nicht mehr weiter.

vielen dank schonmal für hilfe.



Bezug
                                                
Bezug
AWP Beschleunigung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 Mi 06.07.2011
Autor: MathePower

Hallo likenobody,

> Die erneute Berechnung fürhte mich nun zu dem Ergebnis:
>  
> [mm]v(t)=e^{2\cdot{}\bruch{\beta}{m}\cdot{}\bruch{\wurzel{\alpha}}{\wurzel{\beta}}\cdot{}t}\cdot{}c+\bruch{\wurzel{\alpha}}{\wurzel{\beta}}-\bruch{1}{2}\bruch{\wurzel{\beta}}{\wurzel{\alpha}}[/mm]


Hier meinst Du wohl:

[mm]v(t)= \bruch{1}{e^{2\cdot{}\bruch{\beta}{m}\cdot{}\bruch{\wurzel{\alpha}}{\wurzel{\beta}}\cdot{}t}\cdot{}c-\bruch{1}{2}\bruch{\wurzel{\beta}}{\wurzel{\alpha}}}+\bruch{\wurzel{\alpha}}{\wurzel{\beta}}[/mm]


>  
> ist denn die substitution bzw. die erratene lösung bei der
> riccati gleichung mit
> [mm]\bruch{\wurzel{\beta}}{\wurzel{\alpha}}[/mm] korrekt, muss diese
> nicht von t abhänig sein?


Die erratene Lösung lautet doch [mm]\bruch{\wurzel{\alpha}}{\wurzel{\beta}}[/mm]
Diese erratene Lösung muß nicht von t abhängig sein.

>  
> ich weiß bei der aufgabe einfach nicht mehr weiter.
>  
> vielen dank schonmal für hilfe.
>  


Gruss
MathePower  

Bezug
                                                        
Bezug
AWP Beschleunigung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:02 Do 07.07.2011
Autor: likenobody

Ich gehe davon aus das die Lösung v(t)= [mm] \bruch{1}{e^{2\cdot{}\bruch{\beta}{m}\cdot{}\bruch{\wurzel{\alpha}}{\wurzel{\beta}}\cdot{}t}\cdot{}c-\bruch{1}{2}\bruch{\wurzel{\beta}}{\wurzel{\alpha}}}+\bruch{\wurzel{\alpha}}{\wurzel{\beta}} [/mm]  korrekt ist?!

Vielen dank für die Geduld

Bezug
                                                                
Bezug
AWP Beschleunigung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:20 Sa 09.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                                                        
Bezug
AWP Beschleunigung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:22 Sa 09.07.2011
Autor: likenobody



Ich gehe davon aus das die Lösung [mm] v(t)=\bruch{1}{e^{2\cdot{}\bruch{\beta}{m}\cdot{}\bruch{\wurzel{\alpha}}{\wurzel{\beta}}\cdot{}t}\cdot{}c-\bruch{1}{2}\bruch{\wurzel{\beta}}{\wurzel{\alpha}}}+\bruch{\wurzel{\alpha}}{\wurzel{\beta}} [/mm]   korrekt ist?!

Vielen dank für die Geduld

Bezug
                                                                
Bezug
AWP Beschleunigung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:23 Mo 11.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]