matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAWP
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - AWP
AWP < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

AWP: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Do 09.10.2008
Autor: Kreide

Aufgabe
Gegeben ist das AWP:
y'=f(x)g(y) , [mm] y(\xi)=\eta [/mm]

Behauptung:
Wenn [mm] g(\eta)=0 [/mm] ist kann man sofort eine Lösung angeben nämlich y(x) [mm] \equiv \eta [/mm]

Hallo,

ich habe hier für g(y) [mm] g(\eta)=0 [/mm] einsetzt (darf man das?)
y'=f(x)*0=0
->y'=0
-> die Steigung ist null
-> y(x) [mm] \equiv \eta [/mm] , weil [mm] \eta [/mm] dann eine Gerade parallel zur x-Achse ist, die die y-Achse in [mm] \eta [/mm] schneidet.
Stimmt meine ERklärung?
Lg
kreide

        
Bezug
AWP: Antwort
Status: (Antwort) fertig Status 
Datum: 23:21 Do 09.10.2008
Autor: Merle23


> Gegeben ist das AWP:
>  y'=f(x)g(x) , [mm]y(\xi)=\eta[/mm]
>  
> Behauptung:
>  Wenn [mm]g(\eta)=0[/mm] ist kann man sofort eine Lösung angeben, nämlich y(x) [mm]\equiv \eta[/mm]

Setze [mm]f(x) \equiv 1, g(x) = x^3, \eta = 0[/mm]. Dann ist diese "Lösung" falsch.

>  Hallo,
>  
> ich habe hier für g(x) [mm]g(\eta)=0[/mm] einsetzt (darf man das?)

Ne, denn g(x) ist für alle x definiert, [mm] g(\eta) [/mm] eben nur für [mm] \eta. [/mm]

>  y'=f(x)*0=0
>  ->y'=0
>  -> die Steigung ist null

Das gilt aber nur im Punkt [mm]x=\eta[/mm].

>  -> y(x) [mm]\equiv \eta[/mm] , weil [mm]\eta[/mm] dann eine Gerade parallel

> zur x-Achse ist, die die y-Achse in [mm]\eta[/mm] schneidet.
>  Stimmt meine ERklärung?

Wegen dem Obigem ist diese Begründung dann falsch.

Bezug
                
Bezug
AWP: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:19 Fr 10.10.2008
Autor: Kreide

hallo merle,

sorry, ich hatte was in meiner Aufgabenstellung falsch geschrieben. Es hieß
y'=f(x)g(y)...

Bezug
                        
Bezug
AWP: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:21 Fr 10.10.2008
Autor: fred97

Wie lautet denn nun Deine Aufgabe ?

FRED

Bezug
                                
Bezug
AWP: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:59 Fr 10.10.2008
Autor: Kreide

wie sie jetzt da oben steht. ich hab die vorhin korrigiert

Bezug
        
Bezug
AWP: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 Fr 10.10.2008
Autor: Merle23

So wie ich die Aufgabenstellung versteh, musst du nicht den Lösungsweg angeben, sondern nur nachprüfen, ob die Lösung wirklich eine Lösung ist, oder?

In diesem Fall setze doch einfach die vermutliche Lösung [mm]y(x) \equiv \eta[/mm] in die DGL ein und schau, ob die rechte und die linke Seite der DGL gleich sind, und ob die Anfangsbedingungen erfüllt sind.

Bezug
                
Bezug
AWP: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 Fr 10.10.2008
Autor: Kreide

Hallo Merle,

okay
[mm] y(x)=\eta [/mm] ->y'(x)=0

also gilt für y'(x)=f(x)g(y) -> 0=f(x)g(y)

->g(y) =0 (oder f(x) =0 aber das interessiert hier ja nicht ) mit [mm] y=\eta [/mm]

stimmt das nun so?
Lg


Bezug
                        
Bezug
AWP: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 Fr 10.10.2008
Autor: Merle23


> Hallo Merle,
>  
> okay [mm]y(x)=\eta[/mm] ->y'(x)=0
>  
> also gilt für y'(x)=f(x)g(y) -> 0=f(x)g(y)
>  
> ->g(y) =0 (oder f(x) =0 aber das interessiert hier ja nicht) mit [mm]y=\eta[/mm]
>  
> stimmt das nun so?

Ja, nur hast du eine schlechte/unübersichtliche Art das aufzuschreiben.

Machs doch so:

Gegeben ist die DGL [mm]y'(x) = f(x)g(y)[/mm] mit [mm]g(\eta) = 0[/mm]. Sei [mm]y(x) \equiv \eta[/mm].
Linke Seite: [mm]y'(x) = 0.[/mm]
Rechte Seite: [mm]f(x)g(y) = f(x)g(\eta) = f(x)*0 = 0[/mm].
Vergleich: [mm]0 = 0[/mm]. Wahre Aussage.

Test der Anfangsbedingung [mm]y(\xi) = \eta[/mm]: Ebenfalls erfüllt.

Bezug
                                
Bezug
AWP: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:19 Fr 10.10.2008
Autor: Kreide

Ja hast recht. Ich bin im Aufschreiben nich immer so ganz übersichtlich ;-)
Vielen Dank für deine Hilfe!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]