matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAWP
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - AWP
AWP < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

AWP: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:23 Do 29.10.2015
Autor: capri

Aufgabe
a) Berechnen Sie die Lösungen der folgenden Anfangswertprobleme

$ (x+y)y'=y-x $ wobei $y(1)=-1$

und

b) Weisen Sie nach, dass das AWP $ (x+y)y'=y-x $ wobei $y(0)=0$
keine Lösung besitzt.

Hallo, ich hatte diese Aufgabe schon vor einigen Tagen gestellt.

Es gab natürlich einige Antworten, aber bei z.B a) gab es zwei verschiedene Meinungen.

bei a) wurde einmal gesagt es gibt keine Lösung und dann einmal es gibt eine Lösung.

bei b) weiß ich nicht wie ich anfangen soll.

(http://matheforum.net/read?t=1064968) hier ist der Link dazu.

Es war leicht verwirrend deswegen stelle ich es mal nochmal. Hoffe das man mir helfen kann :)

LG



        
Bezug
AWP: Antwort
Status: (Antwort) fertig Status 
Datum: 08:06 Fr 30.10.2015
Autor: fred97


> a) Berechnen Sie die Lösungen der folgenden
> Anfangswertprobleme
>  
> [mm](x+y)y'=y-x[/mm] wobei [mm]y(1)=-1[/mm]
>  
> und
>
> b) Weisen Sie nach, dass das AWP [mm](x+y)y'=y-x[/mm] wobei [mm]y(0)=0[/mm]
>  keine Lösung besitzt.
>  Hallo, ich hatte diese Aufgabe schon vor einigen Tagen
> gestellt.
>  
> Es gab natürlich einige Antworten, aber bei z.B a) gab es
> zwei verschiedene Meinungen.
>  
> bei a) wurde einmal gesagt es gibt keine Lösung und dann
> einmal es gibt eine Lösung.
>  
> bei b) weiß ich nicht wie ich anfangen soll.
>  
> (http://matheforum.net/read?t=1064968) hier ist der Link
> dazu.
>  
> Es war leicht verwirrend deswegen stelle ich es mal
> nochmal. Hoffe das man mir helfen kann :)
>  
> LG
>  
>  

Bei a) gibts doch nix mehr zu diskutieren. Ich wiederhole mich:

Das Anfangswertproblem

  $ (x+y)y'=y-x $,

  $ y(1)=-1 $

hat keine Lösung ! Denn wäre $ y:I [mm] \to \IR [/mm] $ eine Lösung dieser Aufgabe, wobei $ I $ ein Intervall in $ [mm] \IR [/mm] $ mit $ 1 [mm] \in [/mm] I $ ist, so hätten wir

  $ (1+y(1))y'(1)=y(1)-1 $.

Nun ist aber $ 1+y(1)=0 $ und $ y(1)-1=-2 $.


Das hätte $ 0=-2 $ zur Folge !


Was ist daran unklar ????



Zu b):

Wir nehmen an, das AWP



  $ (x+y)y'=y-x $,

  $ y(0)=0 $

hätte eine Lösung $y:I [mm] \to \IR$, [/mm] wobei $0 [mm] \in [/mm] I$ und I ein Intervall in [mm] \IR [/mm] ist.

Für alle x [mm] \in [/mm] I haben wir also

$ (x+y(x))y'(x)=y(x)-x $.


Für $x [mm] \in [/mm] I [mm] \setminus \{0\}$ [/mm] ergibt sich

(*)  $ [mm] (1+\bruch{y(x)}{x})y'(x)=\bruch{y(x)}{x}-1 [/mm] $.

Wegen y(0)=0 können wir den Grenzwert [mm] \limes_{x\rightarrow 0}\bruch{y(x)}{x} [/mm] wie folgt berechnen:

  [mm] $\limes_{x\rightarrow 0}\bruch{y(x)}{x} =\limes_{x\rightarrow 0}\bruch{y(x)-y(0)}{x-0} [/mm] =y'(0)$.

In (*) lassen wir nun $x [mm] \to [/mm] 0$ gehen und bekommen:

   $(1+y'(0))y'(0)=y'(0)-1$.

Das hat aber [mm] y'(0)^2=-1 [/mm]

zur Folge.

Damit sollte klar sein, das das AWP

$ (x+y)y'=y-x $,

  $ y(0)=0$

keine Lösung hat.

FRED



Bezug
                
Bezug
AWP: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:06 Fr 30.10.2015
Autor: capri

ok danke, ja weil zu a) kam ja noch das:

Das kann passieren, denn die Forderung y(0)=0 kann zu einem Widerspruch führen, während die Forderung y(1)=-1 tatsächlich zu einer speziellen Integrationskonstante C führt.  von M.Rex

Damit meinte doch M.Rex dass es ein AWP für a) existiert.
das hat mich halt verwirrt...

LG

Bezug
                        
Bezug
AWP: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:09 Fr 30.10.2015
Autor: fred97


> ok danke, ja weil zu a) kam ja noch das:
>  
> Das kann passieren, denn die Forderung y(0)=0 kann zu einem
> Widerspruch führen, während die Forderung y(1)=-1
> tatsächlich zu einer speziellen Integrationskonstante C
> führt.  von M.Rex
>  
> Damit meinte doch M.Rex dass es ein AWP für a) existiert.

M:Rex irrt sich, wenn er meint, dass das AWP in a) eine Lösung hätte.

FRED

>  das hat mich halt verwirrt...
>  
> LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]