matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAWA mit Potenzreihenansatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - AWA mit Potenzreihenansatz
AWA mit Potenzreihenansatz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

AWA mit Potenzreihenansatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:37 Do 06.01.2011
Autor: Peon

Aufgabe
Lösen Sie die folgende AWA mittels Potenzreihenansatz:
[mm] y'(x)=(y(x))^2-4x+x^2+2x^3-x^4 [/mm]

Hallo,

also ich hänge bei der Aufgabe, daher poste ich mal meine Rechnungen. Nachdem man mit Picard-Lindelöf die Existenz einer eindeutigen Lsg. geprüft hat:
1) f(x,y) ste
2) [mm] \bruch{df}{dy} [/mm] = 2y [mm] \le [/mm] M, also beschränkt

Man wählt ja den Ansatz [mm] y(x)=\summe_{i=0}^{n}a_ix^i [/mm] und [mm] y'(x)=\summe_{i=1}^{n}i*a_i*x^{i-1} [/mm] dies gilt für |x|<R=KR, der nochzu bestimmen ist.

Damit erhalte ich:

[mm] \summe_{i=1}^{n}i*a_i*x^{i-1} [/mm] = [mm] (\summe_{i=0}^{n}a_ix^i)^2-4x+x^2+2x^3-x^4 [/mm]
[mm] =\summe_{j=1}^{n}\summe_{i=1}^{n}a_jx^ja_ix^i [/mm]

und hier ist mein Problem, wie mache ich da weiter, diese Doppelsumme stört irgendwie, oder muss man einen anderen Ansatz wählen, um die Doppelsumme zu vermeiden?

        
Bezug
AWA mit Potenzreihenansatz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:55 Do 06.01.2011
Autor: fred97


> Lösen Sie die folgende AWA mittels Potenzreihenansatz:
>  [mm]y'(x)=(y(x))^2-4x+x^2+2x^3-x^4[/mm]
>  Hallo,
>  
> also ich hänge bei der Aufgabe, daher poste ich mal meine
> Rechnungen. Nachdem man mit Picard-Lindelöf die Existenz
> einer eindeutigen Lsg. geprüft hat:
>  1) f(x,y) ste

Was ist bei Dir f ?


>  2) [mm]\bruch{df}{dy}[/mm] = 2y [mm]\le[/mm] M

Na, na, wo soll das denn gelten ????


, also beschränkt

>
> Man wählt ja den Ansatz [mm]y(x)=\summe_{i=0}^{n}a_ix^i[/mm]


Nein !  Potenzreihenansatz:  


[mm]y(x)=\summe_{i=0}^{\infty}a_ix^i[/mm]


> und
> [mm]y'(x)=\summe_{i=1}^{n}i*a_i*x^{i-1}[/mm] dies gilt für
> |x|<R=KR, der nochzu bestimmen ist.
>  
> Damit erhalte ich:
>  
> [mm]\summe_{i=1}^{n}i*a_i*x^{i-1}[/mm] =
> [mm](\summe_{i=0}^{n}a_ix^i)^2-4x+x^2+2x^3-x^4[/mm]
>  [mm]=\summe_{j=1}^{n}\summe_{i=1}^{n}a_jx^ja_ix^i[/mm]
>  
> und hier ist mein Problem, wie mache ich da weiter, diese
> Doppelsumme stört irgendwie, oder muss man einen anderen
> Ansatz wählen, um die Doppelsumme zu vermeiden?

[mm] y(x)^2 [/mm] kannst Du mit dem Cauchyprodukt berechnen.

FRED


Bezug
                
Bezug
AWA mit Potenzreihenansatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:36 Do 06.01.2011
Autor: Peon

[mm] f=f(x,y)=(y(x)^2-4x+x^2+2x^3-x^4 [/mm] also wird die Gleichung als Funktion in Abhängigkeit von zwei Var.
Die Ableitung ergibt 2y und geht nur für y gegen [mm] \infty [/mm] gegen [mm] \infty, [/mm] ist also beschränkt, oder?

Bezug
                        
Bezug
AWA mit Potenzreihenansatz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Do 06.01.2011
Autor: fred97


> [mm]f=f(x,y)=(y(x)^2-4x+x^2+2x^3-x^4[/mm] also wird die Gleichung
> als Funktion in Abhängigkeit von zwei Var.
> Die Ableitung ergibt 2y und geht nur für y gegen [mm]\infty[/mm]
> gegen [mm]\infty,[/mm] ist also beschränkt, oder?

Nein. 2y ist unbeschränkt !!!

Ganz oben hast Du vergessen die Anfangsbedingung hinzuschreiben

FRED


Bezug
                                
Bezug
AWA mit Potenzreihenansatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 Do 06.01.2011
Autor: Peon

Anfansgwertbed. ist y(0)=1.
Irgendwie stehe ich auf dem Schlauch. Wir hatte mal eine Aufgabe mit Potenzreihenansatz, da lautete die DGL: y'(x)=-x*y(x)=:f(x,y). Mit [mm] \bruch{df}{dy}=|-x|=|x| \le [/mm] M <=> x [mm] \in [/mm] I Intervall, also beschränkt auf Streifen, weil x höchstens im Unendlichen gegen [mm] \infty [/mm] geht?
Kannst Du mir sagen, wo da der Unterschied zu der o.g. Aufgabe ist, oder ist das nur ein formaler Fehler? Ich habe oft Schwierigkeiten, das formal korrekt aufzuschreiben...

Ich habe mir das Cauchy Produkt angeschaut und komme auf :
[mm] (\summe_{n=0}^{\infty}a_nx^n)^2=\summe_{n=0}^{\infty}\summe_{k=0}^{n}a_kx^k*a_{n-k}*x^{n-k} [/mm] ist das woweit richtig? Ich habe Schwierigkeiten, das mal nach dieser Formel für n=2 auszurechnen. Also wenn ich das mit dem Ansatz [mm] (...)^2 [/mm] mache, weiß ich ja, dass folgendes rauskommt:
[mm] a_0^2+a_0a_1x+a_0a_2x^2+a_1xa_0+(a_1x)^2+a_1xa_2x^2+a_2x^2a_0+a_2x^2a_1x+(a_2x^2)^2 [/mm]

Wenn ich nun aber in der Cauchy Formel n=2 einsetze, steht doch in er ersten Summe n=0, also 2=0 ? Hä, sorry Ana ist lange her, wahrscheinlich bin ich nur aus der Übung, kannst du mir da einmal aufschreiben, wie das aussieht, vielleicht hilft mir das für die weitere Berechnung der Aufgabe.

DANKE

Bezug
                                        
Bezug
AWA mit Potenzreihenansatz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:04 Do 06.01.2011
Autor: MathePower

Hallo Peon,

> Anfansgwertbed. ist y(0)=1.
>  Irgendwie stehe ich auf dem Schlauch. Wir hatte mal eine
> Aufgabe mit Potenzreihenansatz, da lautete die DGL:
> y'(x)=-x*y(x)=:f(x,y). Mit [mm]\bruch{df}{dy}=|-x|=|x| \le[/mm] M
> <=> x [mm]\in[/mm] I Intervall, also beschränkt auf Streifen, weil
> x höchstens im Unendlichen gegen [mm]\infty[/mm] geht?
>  Kannst Du mir sagen, wo da der Unterschied zu der o.g.
> Aufgabe ist, oder ist das nur ein formaler Fehler? Ich habe
> oft Schwierigkeiten, das formal korrekt aufzuschreiben...
>  
> Ich habe mir das Cauchy Produkt angeschaut und komme auf :
>  
> [mm](\summe_{n=0}^{\infty}a_nx^n)^2=\summe_{n=0}^{\infty}\summe_{k=0}^{n}a_kx^k*a_{n-k}*x^{n-k}[/mm]


Das stimmt soweit.


> ist das woweit richtig? Ich habe Schwierigkeiten, das mal
> nach dieser Formel für n=2 auszurechnen. Also wenn ich das
> mit dem Ansatz [mm](...)^2[/mm] mache, weiß ich ja, dass folgendes
> rauskommt:
>  

Hier meinst Du sicher das n+1.te Glied der Potenzreihe [mm](\summe_{n=0}^{\infty}a_nx^n)^2[/mm]

Dies ergibt sich zu:

[mm]\summe_{k=0}^{2}a_k*a_{2-k}*x^{n}=\left(a_{0}*a_{2}+a_{1}*a_{1}+a_{2}*a_{0}\right)*x^{2}[/mm]


> [mm]a_0^2+a_0a_1x+a_0a_2x^2+a_1xa_0+(a_1x)^2+a_1xa_2x^2+a_2x^2a_0+a_2x^2a_1x+(a_2x^2)^2[/mm]
>  
> Wenn ich nun aber in der Cauchy Formel n=2 einsetze, steht
> doch in er ersten Summe n=0, also 2=0 ? Hä, sorry Ana ist
> lange her, wahrscheinlich bin ich nur aus der Übung,
> kannst du mir da einmal aufschreiben, wie das aussieht,
> vielleicht hilft mir das für die weitere Berechnung der
> Aufgabe.
>  
> DANKE


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]