matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenARCOSH ableiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - ARCOSH ableiten
ARCOSH ableiten < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ARCOSH ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:27 So 24.10.2010
Autor: Marius6d

Aufgabe
c) Berechnen Sie die umkehrfunktion von arcosh

e) berechnen Sie die Umkehrfunktion von artanh

d) Leiten Sie arcosh ab.

e) Leiten Sie artanh ab.

Also zu c) und e) wie muss ich hier vorgehen um die Umkehrfunktion vom arcosh und artanh zu bilden?

bsp. arcosh = [mm] ln(x+\wurzel{x^2-1} [/mm] = y. Wie bringe ich hier das ln weg?

Und zu d und f):  BSP. d)

hier habe ich abgeleitet und bin auf [mm] \bruch{1}{x+\wurzel{x^{2}-1}}+\bruch{x}{x*\wurzel{x^{2}-1}+x^{2}-1} [/mm]

gekommen.

Aber wie bringe ich es auf die Form [mm] \bruch{1}{\wurzel{x^{2}-1}} [/mm]

Habe hier irgendwie voll die Blockade!

        
Bezug
ARCOSH ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 So 24.10.2010
Autor: schachuzipus

Hallo,


> c) Berechnen Sie die umkehrfunktion von arcosh
>  
> e) berechnen Sie die Umkehrfunktion von artanh
>  
> d) Leiten Sie arcosh ab.
>  
> e) Leiten Sie artanh ab.
>  Also zu c) und e) wie muss ich hier vorgehen um die
> Umkehrfunktion vom arcosh und artanh zu bilden?
>  
> bsp. arcosh[mm]\red{(x)}[/mm] = [mm]ln(x+\wurzel{x^2-1}[/mm] [mm]\red{)}[/mm]= y. Wie bringe ich hier
> das ln weg?

Wende die Exponentialfunktion auf beiden Seiten an:

[mm]\Rightarrow x+\sqrt{x^2-1}=e^y[/mm] ...



>  
> Und zu d und f):  BSP. d)
>
> hier habe ich abgeleitet und bin auf
> [mm]\bruch{1}{x+\wurzel{x^{2}-1}}+\bruch{x}{x*\wurzel{x^{2}-1}+x^{2}-1}[/mm]

Wie genau kommst du darauf?

Ich komme mit Kettenregel auf [mm]\frac{1+\frac{2x}{2\sqrt{x^2-1}}}{x+\sqrt{x^2-1}}[/mm]

Und das ist schnell in die gewünschte Form gebracht!

(Im Zähler steht die innere Ableitung, also die von [mm]x+\sqrt{x^2-1}[/mm])

>  
> gekommen.
>  
> Aber wie bringe ich es auf die Form
> [mm]\bruch{1}{\wurzel{x^{2}-1}}[/mm]
>  
> Habe hier irgendwie voll die Blockade!


Bezug
                
Bezug
ARCOSH ableiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:24 Mo 25.10.2010
Autor: Marius6d

Ah hab nen Überlegungsfehler gemacht! Vielen Dank für die Antwort.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]