matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteA=B*B^T mit B unt. Dreiecksm.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Skalarprodukte" - A=B*B^T mit B unt. Dreiecksm.
A=B*B^T mit B unt. Dreiecksm. < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

A=B*B^T mit B unt. Dreiecksm.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:09 So 09.05.2010
Autor: steppenhahn

Aufgabe
Es sei [mm] n\in\IN [/mm] und [mm] $A\in \IR^{n\times n}$ [/mm] symmetrisch und positiv definit. Zeige, dass es genau eine untere Dreiecksmatrix [mm] B\in\IR^{n\times n} [/mm] gibt, so dass $A = [mm] B*B^{T}$ [/mm] und positiven Diagonaleinträgen.

Hallo!

Ich weiß, dass es zu dieser Aufgabe auch einen sehr "indexlastigen" Ansatz gibt, indem man einfach Koeffizientenvergleich macht. Das ist aber glaube ich nicht Sinn der Aufgabe; sie entstammt einer LA-Vorlesung.

Was wir schon bewiesen haben: Eine positiv definite symmetrische Matrix lässt sich schreiben als: $A = [mm] B*B^{T}$ [/mm] mit B invertierbar. Dafür musste man einfach eine Orthonormalbasis C mit dem von A induzierten Skalarprodukt konstruieren, und erhielt durch die Transformationsmatrix $B = [mm] T^{(e_{1},...,e_{n})}_{C}$ [/mm] (Transformation von Basis [mm] $(e_{1},...,e_{n})$ [/mm] nach $C$) die gewünschte Matrix B.

Ich habe mir nun überlegt, wie man das B entsprechend auf die gewünschte Form bringen könnte:
Wenn ich mit dem Gram-Schmidt-Verfahren eine Orthonormalbasis [mm] C=(c_{1},...,c_{n}) [/mm] aus [mm] (e_{1},...,e_{n}) [/mm] mit dem von A induzierten Skalarprodukt bilde, dann wird ja [mm] c_{i} [/mm] dargestellt als Linearkombination von [mm] e_{1},...,e_{i}. [/mm]

Die Transformationsmatrix [mm] $T^{C}_{(e_{1},...,e_{n}}$ [/mm] hätte also die Form einer unteren Dreiecksmatrix. Entsprechend hat dann auch [mm] $T^{(e_{1},...,e_{n}}_{C} [/mm] = [mm] \Big[ T^{C}_{(e_{1},...,e_{n}}\Big]^{-1}$ [/mm] die Form einer unteren Dreiecksmatrix (das haben wir nicht bewiesen, aber ist ja eigentlich relativ klar).

Dann wäre schonmal die Existenz gezeigt. Stimmt das?

Was mir zu schaffen macht: Die Eindeutigkeit. Gibt es einen Weg, diese zu bekommen, ohne jetzt im großen Stil mit Indizes von Matrizen zu beginnen?
Bisher habe ich:

$A = [mm] B*B^{T} [/mm] = [mm] \pmat{b_{1_{1}} & 0 & ... \\ b_{2_{1}} & b_{2_{2}} & ... \\ ... & ... & ...}*\pmat{b_{1_{1}} & b_{2_{1}} & ... \\ 0 & b_{2_{2}} & ... \\ 0 & ... & ...}$, [/mm]

also [mm] $a_{1_{1}}^{2} [/mm] = [mm] b_{1_{1}}^{2}$ [/mm] --> [mm] b_{1_{1}} [/mm] eindeutig bestimmt, da B positive Diagonaleinträge haben soll...

Aber wie gehts weiter?

Vielen Dank für Eure Hilfe!
Grüße,
Stefan

        
Bezug
A=B*B^T mit B unt. Dreiecksm.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Di 11.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]