matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihen>=0 zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - >=0 zeigen
>=0 zeigen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

>=0 zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:30 Di 14.05.2013
Autor: haner

Aufgabe
[mm] \bruch{16}{(2n+3)\wurzel{16n^2+5}}>=0 [/mm]


Hallo,

der Ausdruck oben müsste doch >=0 sein?
Aber wie kann ich das beweisen. Man sieht ja irgendwie, dass der Nenner gegen unendlich geht, aber wie muss ich das hinschreiben?

Danke

        
Bezug
>=0 zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:40 Di 14.05.2013
Autor: reverend

Hallo haner,

> [mm]\bruch{16}{(2n+3)\wurzel{16n^2+5}}>=0[/mm]

>

> der Ausdruck oben müsste doch >=0 sein?

Vormittags manchmal.
Was ist n? Gilt [mm] n\in\IN [/mm] oder [mm] n\in\IR [/mm] oder [mm] n\in\{-2;1;17\}? [/mm] In den beiden letzteren Fällen dürfte es sich allerdings um sehr wenige nichtnegative Vormittage handeln.

> Aber wie kann ich das beweisen. Man sieht ja irgendwie,
> dass der Nenner gegen unendlich geht,

Wenn man ihn irgendwohin loslässt (am besten vorwärts), dann vielleicht.

> aber wie muss ich das
> hinschreiben?

Erstmal gibt man mal die Aufgabe samt allen Gegebenheiten wieder, dann formuliert man eine Frage, die auch jemand beantworten kann.

Die Ungleichung ist jedenfalls für [mm] n=-\bruch{3}{2} [/mm] nicht definiert und für [mm] n<-\bruch{3}{2} [/mm] unwahr.

Grüße
reverend

> Danke

Bezug
                
Bezug
>=0 zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:45 Di 14.05.2013
Autor: haner

Es gilt: n soll gegen unendlich gehen.

Meine Frage ist, ob man einfach hinschreiben kann, dass der Nenner gegen unendlich geht und somit der Ausdruck >=0 ist?

LG

Bezug
                        
Bezug
>=0 zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:49 Di 14.05.2013
Autor: fred97


> Es gilt: n soll gegen unendlich gehen.
>  
> Meine Frage ist, ob man einfach hinschreiben kann, dass der
> Nenner gegen unendlich geht und somit der Ausdruck >=0
> ist?

Was hat das Treiben des Nenners mit der Frage nach [mm] \ge [/mm] 0 zu tun ?

Wir betrachten

$ [mm] \bruch{16}{(2n+3)\wurzel{16n^2+5}} [/mm] $

Der Zähler dieses Bruches ist schon mal >0.

Damit der Bruch definiert und > 0 ist, muß der Nenner >0 sein, also

    [mm] (2n+3)\wurzel{16n^2+5}>0. [/mm]

Somit muß 2n>-3 sein.

Fazit:  $ [mm] \bruch{16}{(2n+3)\wurzel{16n^2+5}} [/mm] >0$  [mm] \gdw [/mm] n>-3/2

FRED

>  
> LG


Bezug
                                
Bezug
>=0 zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:51 Di 14.05.2013
Autor: haner

Dankeschön

Bezug
                        
Bezug
>=0 zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:34 Di 14.05.2013
Autor: angela.h.b.


> Es gilt: n soll gegen unendlich gehen.

Hallo,

könnte es vielleicht sein, daß Du in Wahrheit gar nicht [mm] "\ge [/mm] 0" zeigen möchtest, sondern daß der Grenzwert für [mm] n\to\infty [/mm] Deines Ausdruckes =0 ist?
Wie Du das aufschreiben mußt, hängt ein bißchen davon ab, was gerade behandelt wurde und wie die genaue Aufgabenstellung heißt.
Diese sollte man hier nie verheimlichen.

LG Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]