matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstiges(9,9) System-Problem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Sonstiges" - (9,9) System-Problem
(9,9) System-Problem < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(9,9) System-Problem: Zu viele Lösungen, x=1&x=0
Status: (Frage) beantwortet Status 
Datum: 13:35 So 22.01.2006
Autor: PoWerBaR

Aufgabe
eigene aufgabe aus Facharbeit!

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: (teilweise) http://www.chemieonline.de/forum/showthread.php?p=433784#post433784 gestellt...

Hallo!
Für meine Facharbeit in der PHYSIK (noch 4 Tage Zeit ;) ) habe ich ein Problem: ich habe ein (9,9)-Gleichungssystem, welches aus einer geometrischen Anordnung entstanden ist, und demnach lösbar ist - allerdings brauche ich eine allgemeine lösung. Bei chemieonline wurde mir schon geholfen, des zu lösen und mich in MuPAD einzuarbeiten. MuPAD kann es auch lösen, wenn man Zahlen angibt, allerdings bemerkt man dann, dass es unendlich hoch 1 lösungen gibt, es wird einen lösung angegeben und dann ein vektor, wenn man dessen vielfachen addiert, gibts auch korrekte lösungen.
deshalb kann auch MuPAD den allgemeinen Fall nicht lösen...
Kann jemand das lösen, in einem Programm wo er die Wertemenge der Lösungen angeben kann? weil meine x können nur 0 oder 1 sein - und dafür gibts auch nur eine allgemeine lösung. nur die zu finden ist wohl schwierig, oder?

die matrizen sind in MuPAD formatierung:

[
[1,0,0,1,0,0,1,0,0],
[0,1,0,0,1,0,0,1,0],
[0,0,1,0,0,1,0,0,1],
[1,1,1,0,0,0,0,0,0],
[0,0,0,1,1,1,0,0,0],
[0,0,0,0,0,0,1,1,1],
[0,1,0,1,0,0,0,0,0],
[0,0,1,0,1,0,1,0,0],
[0,0,0,0,0,1,0,1,0]
]

udn für die summen:

[s1,s2,s3,s4,s5,s6,s7,s8,s9]

Bitte helft mir, sonst hab ich ein kleines Problem ;)

danke, basti

        
Bezug
(9,9) System-Problem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 So 22.01.2006
Autor: DaMenge

Hi,

sehe ich das richtig, dass du follgendes Gleichungssystem lösen willst?

[mm] $\pmat{1&0&0&1&0&0&1&0&0\\ 0&1&0&0&1&0&0&1&0\\ 0&0&1&0&0&1&0&0&1\\ 1&1&1&0&0&0&0&0&0\\ 0&0&0&1&1&1&0&0&0\\ 0&0&0&0&0&0&1&1&1\\ 0&1&0&1&0&0&0&0&0\\ 0&0&1&0&1&0&1&0&0\\ 0&0&0&0&0&1&0&1&0}*\vektor{x_1\\x_2\\x_3\\x_4\\x_5\\x_6\\x_7\\x_8\\x_9}=\vektor{s_1\\s_2\\s_3\\s_4\\s_5\\s_6\\s_7\\s_8\\s_9}$ [/mm]

tja, das sollte nicht so schwer zu lösen sein:
Gauß-Algo aber zuerst ein paar Zeilen vertauschen um Arbeit zu sparen:
[mm] $\pmat{1&0&0&1&0&0&1&0&0\\ 0&1&0&0&1&0&0&1&0\\ 0&0&1&0&0&1&0&0&1\\ 0&0&0&1&1&1&0&0&0\\ 0&0&1&0&1&0&1&0&0\\ 0&0&0&0&0&1&0&1&0\\ 0&0&0&0&0&0&1&1&1\\ 1&1&1&0&0&0&0&0&0\\ 0&1&0&1&0&0&0&0&0 }*\vektor{x_1\\x_2\\x_3\\x_4\\x_5\\x_6\\x_7\\x_8\\x_9}=\vektor{s_1\\s_2\\s_3\\s_5\\s_8\\s_9\\s_6\\s_4\\s_7}$ [/mm]

(lieber nochmal prüfen)

dann muss man nur eine Stelle und die letzten beiden Zeilen etwas umrechnen (in Zeilenstufenform aber immer dieselben Umformungen auch am Lösungsvektor machen) und kann dann schon die Werte für die x von unten nach oben ablesen..

versuchst du es mal ?
viele Grüße
DaMenge

Bezug
                
Bezug
(9,9) System-Problem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:05 So 22.01.2006
Autor: PoWerBaR

hmm könnte schon sein - allerdings sind bis jetzt 2 CAS dran gescheitert - als lösung bekommt man nämlich nen kern und ein vektor...

muss uach leider sagen: mit ein bischen nachdenken habe ich sinnvollere gleichungen gefunden, die man im kof lösen kann - und die funktionieren.

soll heißen: das problem ist zwar nicht gelöst, aber das ist egal da es nicht mehr besteht ;)

trotzdem ein danke für deine mühe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]