matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnung9.050_a._N(1000;5)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitsrechnung" - 9.050_a._N(1000;5)
9.050_a._N(1000;5) < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

9.050_a._N(1000;5): Berechne die Zufallsvariable b
Status: (Frage) beantwortet Status 
Datum: 20:04 Di 31.03.2015
Autor: spikemike

Aufgabe
Eine Zufallsvariable X ist nach N(1000;50) verteilt. Wie groß ist b, wenn P(X [mm] \le) [/mm] 0,94?
Es liegt eine Normalverteilung mit (mü=1000) und (sigma=50) vor.

R: P(X [mm] \le [/mm] b)=0,94 mit N(1000;50)

Z=(X-1000)/50  
0,94=(X-1000)/50  /*50
47=X-1000   /+1000
1047=X
X=1047

damit: P(X [mm] \le [/mm] 1047)

Das b hat doch was mit dem X zu tun oder?
Lösung laut Buch....1077,74.

Mfg spikemike.

        
Bezug
9.050_a._N(1000;5): Antwort
Status: (Antwort) fertig Status 
Datum: 20:09 Di 31.03.2015
Autor: Thomas_Aut


> Eine Zufallsvariable X ist nach N(1000;50) verteilt. Wie
> groß ist b, wenn P(X [mm]\le)[/mm] 0,94?
>  Es liegt eine Normalverteilung mit (mü=1000) und
> (sigma=50) vor.
>  R: P(X [mm]\le[/mm] b)=0,94 mit N(1000;50)

Bedenke : [mm] $\Phi(z) [/mm] = 0,94$
Also suche das passende z.

>  
> Z=(X-1000)/50  
> 0,94=(X-1000)/50  /*50
>  47=X-1000   /+1000
>  1047=X
>  X=1047
>  
> damit: P(X [mm]\le[/mm] 1047)
>  
> Das b hat doch was mit dem X zu tun oder?
>  Lösung laut Buch....1077,74.
>  
> Mfg spikemike.

Lg

Bezug
                
Bezug
9.050_a._N(1000;5): Rückmeldung
Status: (Frage) beantwortet Status 
Datum: 20:57 Di 31.03.2015
Autor: spikemike

Aufgabe
Eine Zufallsvariable X ist nach N(1000;50) verteilt. Wie groß ist b, wenn P(X [mm] \le) [/mm] 0,94?
Es liegt eine Normalverteilung mit (mü=1000) und (sigma=50) vor.

R: P(X [mm] \le [/mm] b)=0,94 mit N(1000;50)

[mm] \sigma [/mm] (z)=0,94

Jetzt suche ich mir in der Tabelle den richtigen [mm] \phi(z) [/mm] Wert heraus:

Also 0,9394 steht bei [mm] \phi(z) [/mm] 1,55 und 0,9406 bei [mm] \phi(z) [/mm] 1,56

R [mm] [\phi [/mm] 1,55]: Z=(X-1000)/50  
1,55=(X-1000)/50  /*50
77,5=X-1000   /+1000
1077,5=X
X=1077,5

R [mm] [\phi [/mm] 1,56]:
1,56=(X-1000)/50  /*50
78=X-1000   /+1000
1078=X
X=1078

Welches [mm] \phi(z) [/mm] soll ich den jetzt nehmen?
Liegen doch beide 0,06 von 0,94 entfernt.

Das Erste Ergebnis mit 1077,5 gefällt mir schon ganz gut aber 1077,74 kommt da noch nicht heraus!?

Besten Dank für eure kompetente Mithilfe, mfg spikemike.

Bezug
                        
Bezug
9.050_a._N(1000;5): Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Di 31.03.2015
Autor: Thomas_Aut



Lg> Eine Zufallsvariable X ist nach N(1000;50) verteilt. Wie

> groß ist b, wenn P(X [mm]\le)[/mm] 0,94?
> Es liegt eine Normalverteilung mit (mü=1000) und
> (sigma=50) vor.
>  R: P(X [mm]\le[/mm] b)=0,94 mit N(1000;50)
>
> [mm]\sigma[/mm] (z)=0,94
>  
> Jetzt suche ich mir in der Tabelle den richtigen [mm]\phi(z)[/mm]
> Wert heraus:
>  
> Also 0,9394 steht bei [mm]\phi(z)[/mm] 1,55 und 0,9406 bei [mm]\phi(z)[/mm]
> 1,56

Du könntest beispielsweise 1,555 nehmen (als Mittel zwischen diesen Werten - das wäre quasi die neutralste Variante um sich nicht für einen Wert entscheiden zu müssen.

Damit wirst du auch den von dir gesuchten Wert erhalten.

Lg

>  
> R [mm][\phi[/mm] 1,55]: Z=(X-1000)/50  
> 1,55=(X-1000)/50  /*50
> 77,5=X-1000   /+1000
> 1077,5=X
> X=1077,5
>  
> R [mm][\phi[/mm] 1,56]:
>  1,56=(X-1000)/50  /*50
> 78=X-1000   /+1000
> 1078=X
> X=1078
>  
> Welches [mm]\phi(z)[/mm] soll ich den jetzt nehmen?
>  Liegen doch beide 0,06 von 0,94 entfernt.
>  
> Das Erste Ergebnis mit 1077,5 gefällt mir schon ganz gut
> aber 1077,74 kommt da noch nicht heraus!?
>  
> Besten Dank für eure kompetente Mithilfe, mfg spikemike.


Bezug
                                
Bezug
9.050_a._N(1000;5): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:47 Mi 01.04.2015
Autor: spikemike

Also ich muss mir den Mittelwert selbst suchen bzw. bestimmen (Fallweise) und kann ihn
nicht immer aus der Tabelle ablesen, in Ordnung.

Besten Danke, spikemike.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]