matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Finanzmathematik72er Formel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Finanzmathematik" - 72er Formel
72er Formel < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

72er Formel: Interpretation des Ergebnisses
Status: (Frage) beantwortet Status 
Datum: 19:17 Do 17.09.2009
Autor: ps_tricks

Aufgabe
An amerikanischen Börsen rechnet man überschlagsmäßig mit folgender "72-er - Formel":
Wird ein Kapital B mit p Prozent verzinst, so verdoppelt sich das Kapital in 72/p
Jahren. Wie gut ist diese Näherung ?

Also ich hab so angefangen:
Es gilt ja:
[mm] $S_{n} [/mm] = B [mm] \cdot r^{n} [/mm] = B [mm] \cdot (1+p)^{n}$ [/mm]
Bei einer Verdoppelung ergibt sich ja dann
$2B = B [mm] \cdot (1+p)^{n}$ [/mm]
und daraus folgt dann nach Umformung
$n = [mm] \frac{log(2)}{log(1+p)}$. [/mm]

Für betragsmäßig kleine $x$ konvergiert ja $log(1+x)$ gegen $x$.
Also ergibt sich annähernd
$n= [mm] \frac{log(2)}{p} \approx \frac{69,3}{p}$. [/mm]

Nun ist ja aber die Frage, wie gut diese Annäherung mit 72 ist. Ich weiss jetzt leider nicht, wie ich das interpretieren soll.

        
Bezug
72er Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 Do 17.09.2009
Autor: Al-Chwarizmi


> An amerikanischen Börsen rechnet man überschlagsmäßig
> mit folgender "72-er - Formel":
>  Wird ein Kapital B mit p Prozent verzinst, so verdoppelt
> sich das Kapital in 72/p
>  Jahren. Wie gut ist diese Näherung ?
>  Also ich hab so angefangen:
>  Es gilt ja:
>  [mm]S_{n} = B \cdot r^{n} = B \cdot (1+p)^{n}[/mm]
>  Bei einer
> Verdoppelung ergibt sich ja dann
>  [mm]2B = B \cdot (1+p)^{n}[/mm]
>  und daraus folgt dann nach
> Umformung
> [mm]n = \frac{log(2)}{log(1+p)}[/mm].
>  
> Für betragsmäßig kleine [mm]x[/mm] konvergiert ja [mm]log(1+x)[/mm] gegen
> [mm]x[/mm].
>  Also ergibt sich annähernd
> [mm]n= \frac{log(2)}{p} \approx \frac{69,3}{p}[/mm].
>  
> Nun ist ja aber die Frage, wie gut diese Annäherung mit 72
> ist. Ich weiss jetzt leider nicht, wie ich das
> interpretieren soll.

Mit der logarithmischen Rechnung hast du einmal den
Grund eruiert, weshalb man überhaupt ungefähr nach
einer solchen Faustregel rechnen kann. Dass man mit
72 rechnet, hat sicher damit zu tun, dass 72 durch 2,3,
4,5,6,7,8,9,10,12 sehr leicht zu dividieren ist, und zwar
ohne Taschenrechner.
69.3 wäre für ganz kleine p eine bessere Wahl.

Um die Güte der Approximation für gängige Zins-
sätze etwa im Bereich von 1% bis 12% zu prüfen,
würde ich einfach erst einmal eine Vergleichstabelle
und/oder Grafik erstellen.

LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]