matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysis6. Einheitswurzeln
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - 6. Einheitswurzeln
6. Einheitswurzeln < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

6. Einheitswurzeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:41 Mo 14.08.2006
Autor: Alex_Pritzl

Hallo!

Ich soll nachweisen, dass die 6. Einheitswurzeln die Ecken eines regelmäßigen Sechs-Ecks bilden.

Wie funktioniert das?

Danke.

Gruß
Alex

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
6. Einheitswurzeln: Je nachdem
Status: (Antwort) fertig Status 
Datum: 14:03 Mo 14.08.2006
Autor: statler

Auch hallo!

> Ich soll nachweisen, dass die 6. Einheitswurzeln die Ecken
> eines regelmäßigen Sechs-Ecks bilden.
>  
> Wie funktioniert das?

Wenn du mit komplexen Zahl rechnen kannst und darfst, dann sind das die 6 Zahlen
[mm] z_{n} [/mm] = [mm] e^{in\bruch{\pi}{3}}, [/mm] n = 0, 1, ... , 5
oder auch
[mm] z_{n} [/mm] = cos(n*60°) + i*sin(n*60°)
Mit diesen Werten müßtest du dir jetzt eine Zeichnung machen, dann würde es wahrscheinlich klar.
Wenn du nicht komplex rechnen kannst, hast du nur 2 6. Einheitswurzeln, nämlich 1 und -1, das ist kein 6eck.

Gruß aus HH-Harburg
Dieter



Bezug
                
Bezug
6. Einheitswurzeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:09 Mo 14.08.2006
Autor: Alex_Pritzl

Die Wurzeln sind bei mir:
[mm] \alpha_1=1 [/mm]
[mm] \alpha_2=-1 [/mm]
[mm] \alpha_{3/4}= \bruch{1}{2}\pm\bruch{1}{2} \wurzel{3} [/mm]
[mm] \alpha_{5/6}=-\bruch{1}{2}\pm\bruch{1}{2} \wurzel{3} [/mm]

Ich habe die Wurzeln auch schon in die Gauß´sche Zahlenebene eingezeichnet - es ergibt auch ein 6-Eck -, nur weiß ich nicht wie ich das zeigen soll.

Gruß
Alex


Bezug
                        
Bezug
6. Einheitswurzeln: Naja,...
Status: (Antwort) fertig Status 
Datum: 14:23 Mo 14.08.2006
Autor: statler

...du kannst dir z. B. überlegen, wie weit jede dieser Zahlen (also jeder dieser Punkte) vom Ursprung entfernt ist. Und dann kannst du dir ebenfalls überlegen, welchen Winkel jede dieser Zahlen mit der x-Achse bildet. Und dann vergleich das mal mit den entsprechenden Werten beim regelmäßigen 6eck.

Das sollte dann als Beweis reichen!

Gruß
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]