matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorik6-stellige Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Kombinatorik" - 6-stellige Zahlen
6-stellige Zahlen < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

6-stellige Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:30 Di 01.04.2008
Autor: MasterEd

Aufgabe
Aus den 10 Ziffern 0 bis 9 wird eine 6-stellige Zufallszahl gebildet. Dabei kann jede Ziffer innerhalb der Zahl mehrfach vorkommen und die Zufallszahl kann auch mit der 0 beginnen. Wie hoch ist die Wahrscheinlichkeit, dass eine solche Zufallszahl aus 6 unterschiedlichen Ziffern besteht?

Hallo,

meine Frage ist, wie man bei der Aufgabe auf den Ansatz und natürlich auch die Lösung kommt. Ich habe keine Ahnung, wie man das rechnet. Wäre super, wenn mir jemand helfen könnte. Ich habe diese Frage nirgendwo sonst gestellt.

Vielen Dank!

        
Bezug
6-stellige Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:45 Di 01.04.2008
Autor: Teufel

Hallo!

Die Wahrscheinlichkeit dafür lässt sich berechnen mit [mm] p=\bruch{\text{Anzahl der günstigen Zusammenstellungen}}{\text{Anzahl aller möglichen Zusammenstellungen}}. [/mm]

Jetzt musst du noch diese beiden Anzahlen raus finden!

Anzahl aller möglichen Zusammenstellungen:
Die erste Zahl kann 0, 1, 2, ... 9 sein, also hast du 10 Möglichkeiten dafür. Die 2. Zahl kann wieder eine Zahl zwischen 0 und 9 sein u.s.w. Kommst du damit weiter?

Anzahl der günstigen Zusammenstellungen:
Hier hast du für die erste Ziffer 10 Möglichkeiten, wie schon davor. Aber bei der 2. Ziffer hast du nur noch 9 Möglichkeiten, da ja schon eine Zahl verwendet wurde und die nicht noch einmal vorkommen darf. Für die 3. Stelle hast du dann wie viel Möglichkeiten? Und für die anderen?

Bezug
                
Bezug
6-stellige Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:39 Di 01.04.2008
Autor: MasterEd

Hallo,

also ich kann aus den 10 Ziffern insgesamt [mm] 10^6 [/mm] mögliche 6-stellige Zahlen bilden. Für die "günstigen Zusammenstellungen" (alle Ziffern verschieden) habe ich 10 Möglichkeiten für die erste Stelle, 9 für die zweite Stelle, 8 für die dritte usw. Insgesamt also [mm] $\bruch{10!}{4!}=151200$ [/mm] Stück.

Demnach beträgt die Wahrscheinlichkeit, dass alle Ziffern verschieden sind
[mm] $P=\bruch{151200}{10^6}\approx [/mm] 0,15$, d.h. etwa 85% der Zufallszahlen enthalten mindestens eine Ziffer mindestens doppelt.

Ist das so richtig? Vielen Dank für Deine Hilfe!

Bezug
                        
Bezug
6-stellige Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 Di 01.04.2008
Autor: Teufel

Jo, genau das hatte ich auch raus. Da die Zahl eigentlich recht schön war, würde ich auch 15,12% schreiben, aber ist Ansichtssache :) richtig ist richtig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]