matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und Approximation4 dimensionale Interpolation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Interpolation und Approximation" - 4 dimensionale Interpolation
4 dimensionale Interpolation < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

4 dimensionale Interpolation: Zeitlicher Zusammenhang
Status: (Frage) beantwortet Status 
Datum: 11:31 Mi 02.05.2007
Autor: Alison

Schönen guten Tag,

ich bin neu hier und noch nicht mal sicher ob ich hier hin gehöre (ich denke mal "Mathe Interessiert" passt am besten) aber ich versuche mal mein Problem los zu werden, weil ich das Gefühl habe, dass es hier Leute gibt, die mir den entschiedenen Tipp geben könnten.

Ich hab physikalische Chemie studiert, arbeite zurzeit allerdings eher als Ingenieur. Dabei hab ich mit (höherer) Mathematik nur wenig zu tun und genau das ist das Problem, denn die Aufgabe vor der ich stehe überfordert mir ganz eindeutig (und leider auch meine Kollegen :)).

Also,
(ich abstrahiere ein bisschen)
ich habe eine Ebene. In dieser Ebene liegen 5*5 Thermoelemente (TCs), nicht ganz äquidistant, die äußeren TCs liegen immer noch etwas vom Rang der Eben entfernt.

Jetzt beginnt sich die Temperatur zu verändern und ich nehme die Daten der TCs einmal pro Sekunde auf.

Nehmen wir an, dass eine heißer Punkt die Ebene von links nach rechts durchläuft und dabei kleiner wird. Der Punkt hat keine scharfen Kanten sonder die heiße Zone läuft sanft zu den Seiten hin aus. Der heiße Bereich ist in etwas so groß wie der Abstand zweiter TCs.

Ich möchte jetzt einen Interpolation durchführen, die mir die die Temperaturen (als 'Funktion der Zeit) auch für den Raum zwischen den TCs berechnet.

Der erste Ansatz war eine (lineare oder  kubische) Interpolation in der Eben für jeden Zeitschritt durchzuführen.

Das gibt hübsche bunte Bilder, die aber leider nicht der Wirklichkeit entsprechen: Wenn sich meine heiße Zone gerade zwischen den TCs befindet sehe ich sie nicht (oder nur die Ausläufer) und die Interpolation liefert zu niedrige Temperaturen.

Ich bräuchte also eine Art 4-dimensionale Interpolation, die berücksichtigt, dass die Einzeldaten auch noch zeitlich zusammenhängen.

Ich kann mir vorstellen, dass das Problem an tausend Ecken auftaucht - kann mir jemand mit einem Tipp oder Link weiterhelfen?

Gruß,

Alison

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
4 dimensionale Interpolation: ein paar Hinweise
Status: (Antwort) fertig Status 
Datum: 14:41 Do 03.05.2007
Autor: mathemaduenn

Hallo Alison,
5*5 Punkte scheinen mir zum Interpolieren ein bischen wenig. Außerdem sieht 5*5 eher nach einem 2D Modell aus. Ein Ausweg wäre es eine parameterabhängige Funktion zu entwickeln die dieses praktische Problem darstellen kann und dann eine Approximation zu machen.

Eine Mischung aus beiden Ansätzen wäre auch möglich.
In etwa könnte man z.B. sagen die Temperaturverteilung ist quadratisch
[mm] t=a+bx+cy+d*x^2+e*y^2+f*x*y [/mm]
Fittet dies in jedem Zeitschritt und interpoliert über die Zeit. Falls sich das ganze langsam ändert so sollte die 1 Sekunde hier ja ausreichend sein.
Ich muß allerdings anmerken das ich technisch keine Ahnung hab es scheint mir aber naheliegend das es parametrisierte Modelle für eine solche Temperturverteilung geben könnte.( Ergänzung Wärmeleitungsgleichung scheint hier das Stichwort zu sein)
viele Grüße
mathemaduenn
P.S.

Bezug
                
Bezug
4 dimensionale Interpolation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:37 Do 03.05.2007
Autor: Alison

Hallo mathemaduenn,

danke für die Hinweise, du hast völlig recht, die Anzahl der Messstellen ist zu klein, leider lässt sich das aus experimentellen Gründen nicht ändern (ich würde es gern weiter erklären, aber das geht aus Geheimhaltungsgründen nicht [nicht das es so schrecklich geheim wäre aber unsere Firma ist supervorsichtig, ich darf noch nicht mal Latex benutzen, weil es ja umsonst ist ...]).

Was die Anzahl der Dimensionen angeht, so habe ich einfach so gezählt: zwei Raumrichtungen (Ebene), die Temperatur und die Zeit. Wenn ich eine Dimension weniger hätte (z.B. nur eine Reihe von TCs) würde ich das Ganze als 3D Plot darstellen können (x Achse: Position der TC, y: Zeit, z: Temperatur) und dann eine "Ausgleichsfläche" berechnen lassen. So geht das natürlich nicht, ich brauche aber auch keine Visualisierung sondern "nur" den interpolierten Datensatz.

Die Idee, das man eine Funktion definieren muss (quasi eine Modellvorstellung vorgeben) was mir auch schon gekommen, allerdings habe ich noch keine passende gefunden. Das mit der Wärmeleitung geht in die richtige Richtung, allerdings spielen auch noch chemische Reaktionen mit.
besten Dank schon mal,

ich suche und grübel noch weiter.

Gruß, Alison




Bezug
                        
Bezug
4 dimensionale Interpolation: Reduzierung des Problems
Status: (Frage) beantwortet Status 
Datum: 12:54 Mo 21.05.2007
Autor: Alison

Hallo,
ich habe ein wenig weiter gegrübelt und konnte das Problem immerhin (wenigstens für mich) etwas vereinfachen. Allerdings fehlt mir immer noch das letzte Glied in der Kette, deshalb noch einmal die Frage ob jemand helfen kann:
Ich habe mal eine Datei mit zwei gemessenen Kurven (magenta und cyan) angefügt. Es gilt die Punkte einer dazwischen liegenden Kurve zu berechnen, die ich von Hand mal (nicht sehr gut) grün eingezeichnet habe. Ich finde, dass es intuitiv klar ist wie die Kurve aussehen muss, aber ich komme einfach nicht darauf, wie man sie berechnen könnte.
Gruß, Alison
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                                
Bezug
4 dimensionale Interpolation: Antwort
Status: (Antwort) fertig Status 
Datum: 10:19 Mi 23.05.2007
Autor: mathemaduenn

Hallo Alison,
Deinen Ausführungen und dem Bild entnehme ich das Du in etwa sowas suchst.
Du hast 2 Funktionen [mm] f_1 [/mm] und [mm] f_2 [/mm] die folgendermaßen von einer Funktion f abhängen
[mm] f_1=a_1*f(b_1*x)+c [/mm]
[mm] f_2=a_2*f(b_2*x)+c [/mm]

Das multiplizieren mit a staucht/streckt die Funktion in x. Analog für b in y. Deine grüne Funktion erhälst Du dann über
[mm] f_3=\frac{a_1+a_2}{2}*f(\frac{b_1+b_2}{2}*x)+c [/mm]

Das wäre jetzt mein Vorschlag.
viele Grüße
mathemaduenn

Bezug
                                        
Bezug
4 dimensionale Interpolation: Anmerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:05 Mi 23.05.2007
Autor: Herby

Hallo Mathemaduenn,

sowas hatte ich mir auch gedacht, allerdings stört mich der Bereich von 50-70 der cyan-farbenen Kurve in Bezug auf den Bereich um 50 der anderen Kurve. Das Verhältnis zum Rest stimmt da nicht.


Liebe Grüße
Herby

Bezug
                                                
Bezug
4 dimensionale Interpolation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:03 Mi 23.05.2007
Autor: mathemaduenn

Hallo Herby,

Zu überlegen wäre noch wie man die Funktion f wählt. Hier würde ich einen kubischen Spline mit ausreichend Stützstellen vorschlagen. Betrachtet man die Funktionswerte an den Stützstellen als auch die a und b als freie Parameter und löst das ganze mittels Gaußschen Fehlerquadraten, so bekommt man (imho ausprobiert hab ich's nicht) zum einen die aus den beiden Funktionen gemittelte Funktion f und zum anderen die gesuchte verschobene und gestauchte Funktion [mm] f_3 [/mm] . Obwohl ich zugeben muß das dies alles aus dem Bild geraten ist, ob der technische Hintergrund das hergibt weiß ich nat. nicht ;-)

viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]