matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastik4CDs in die richtige Hülle
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stochastik" - 4CDs in die richtige Hülle
4CDs in die richtige Hülle < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

4CDs in die richtige Hülle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:13 Fr 14.04.2006
Autor: Phoney

Aufgabe
Steffi kann noch nicht lesen, hilft ihrer Schwester aber beim Einräumen von herumliegenden CDs. Sie ordnet die CDs beliebig, also zufällig in die Hüllen ein.
Wie groß ist die Wahrscheinlichkeit, dass Steffi alle CDs falsch einordnet.  

Hallo.

Diese Aufgabe bringt mich zum verzweifeln. Ich mache ein ganz einfaches Baumdiagramm und sage, dass die erste CD, die sie findet, in eine der vier Hüllen kommt, dass sie die falsch einpackt, ist

p("erste CD in die falsche Hülle")=3/4

Nun bleiben noch 3 Hüllen übrig, dass sie die zweite CD falsch einpackt, ist 2/3

Somit ergibt sich

p("alle falsch") = 3/4*2/3*1/2*1/1

Tja, leider falsch, das Ergebnis ist

[mm] \br{9}{24} [/mm]

Wie kommt man darauf?
Ich habe ja jetzt 6/24, also 0,25 heraus.

Ich denke, mein Fehler liegt darin, dass wenn die erste CD falsch eingeordnet wurde, zwangsweise eine zweite CD falsch eingeordnet werden muss, weil die richtige Hülle schon belegt ist.

D. h. es ergibt sich nicht der Pfad falsch, richtig, richtig, richtig.

Vorschläge?

Gruß

        
Bezug
4CDs in die richtige Hülle: Antwort
Status: (Antwort) fertig Status 
Datum: 17:03 Fr 14.04.2006
Autor: Walde

Hi Phoney,

bist du dir zu 100% sicher, dass [mm] \bruch{9}{24} [/mm] das richtige Ergebnis ist?

EDIT: es stimmt, siehe unten

Meine Überlegung:
Klar, es gibt 4!=24 Möglichkeiten 4 CD's auf die Plätze(Hüllen) zu verteilen.

Wieviele Mögl. gibt es, bei denen alle 4 Richtig sind? nur
1


Wieviele Mögl. gibt es, bei denen 3 Richtig sind? 0, denn dann wären automatisch 4 Richtig (R)

Wieviele Mögl. gibt es, bei denen 1 Richtig ist?
4,
denn wenn eine R ist (4 mögl. CD's zur Auswahl) und 3 F, dann gibt es für die falschen nur eine mögliche Anordung untereinander (sonst wäre von denen wieder mind. eine R)

EDIT:
Korrektur: für die 3 Falschen gibt es 2 mögl. Anordungen, nämlich 312 und 231

d.h. es gibt 4*2=8 Möglichkeiten

Wieviele Mögl. gibt es, bei denen 2 Richtig sind?
[mm] \vektor{4 \\ 2}=6, [/mm] kann man auch einfach abzählen
Für die beiden Falschen gibt es keine zusätzlichen Anordungen untereinander, sonst wären ja beide wieder R

Sind nach meinen Überlegungen 1+8+6=15 Anordnungen, bei denen mind. eine CD richtig einsortiert ist, demnach 24-15=9 Möglichkeiten, bei denen alle falsch sind, also P(' alle falsch einsortiert ') [mm] =\bruch{9}{24} [/mm]



L G walde



Bezug
                
Bezug
4CDs in die richtige Hülle: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:24 Fr 14.04.2006
Autor: Phoney

Moin.

>  
> bist du dir zu 100% sicher, dass [mm]\bruch{9}{24}[/mm] das richtige
> Ergebnis ist?

  
Natürlich nicht, aber in den Lösungen ist es so angegeben.
Die Wahrscheinlichkeit, dass alle CDs falsch eingeordnet sind, ist 9/24 [mm] \approx [/mm] 37,5%

> Meine Überlegung:
> Klar, es gibt 4!=24 Möglichkeiten 4 CD's auf die
> Plätze(Hüllen) zu verteilen.
>  
> Wieviele Mögl. gibt es, bei denen alle 4 Richtig sind? nur
> 1
>
>
> Wieviele Mögl. gibt es, bei denen 3 Richtig sind? 0, denn
> dann wären automatisch 4 Richtig (R)
>  
> Wieviele Mögl. gibt es, bei denen 1 Richtig ist?
> 4,
>  denn wenn eine R ist (4 mögl. CD's zur Auswahl) und 3 F,
> dann gibt es für die falschen nur eine mögliche Anordung
> untereinander (sonst wäre von denen wieder mind. eine R)
>  
> Wieviele Mögl. gibt es, bei denen 2 Richtig sind?
> [mm]\vektor{4 \\ 2}=6,[/mm] kann man auch einfach abzählen
> Für die beiden Falschen gibt es keine zusätzlichen
> Anordungen untereinander, sonst wären ja beide wieder R
>  
> Sind nach meinen Überlegungen 1+4+6=11 Anordnungen, bei
> denen mind. eine CD richtig einsortiert ist, demnach
> 24-11=13 Möglichkeiten, bei denen alle falsch sind, also
> P(' alle falsch einsortiert ') [mm]=\bruch{13}{24}[/mm]
>  
> Was meinste?

Irgendwie überzeugt die mich! Hört sich gut an, danke schon einmal für die Mühe.

Gruß Phoney

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]