matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnung3xMindestens 3 Treffer
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitsrechnung" - 3xMindestens 3 Treffer
3xMindestens 3 Treffer < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

3xMindestens 3 Treffer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:07 So 21.10.2018
Autor: hase-hh

Aufgabe
Es werden in einer Massenproduktion Teile hergestellt. Diese Teile sind erfahrungsgemäßig zu 4% defekt.

Wie viele Teile muss man der Produktion mindestens entnehmen, wenn man mit einer Wahrscheinlichkeit von mindestens 95% mindestens drei fehlerfreie Teile finden möchte?

Moin Moin,

hier frage ich mich, ob es einen einfachen Lösungsweg gibt???

Also ich definiere:  

X ist die Anzahl der fehlerfreien Teile in der Stichprobe.

p = 0,96;  q = 0,04;  n ist gesucht.


P(X [mm] \ge [/mm] 3) [mm] \ge [/mm] 0,95


1 - P(X < 3) [mm] \ge [/mm] 0,95

1 - P(X [mm] \le [/mm] 2) [mm] \ge [/mm] 0,95

P(X [mm] \le [/mm] 2) [mm] \le [/mm] 0,05

Soweit, sollte es stimmen...

[mm] \vektor{n \\ 0}*0,96^0*0,04^n [/mm] + [mm] \vektor{n \\ 1}*0,96^1*0,04^{n-1} [/mm] + [mm] \vektor{n \\ 2}*0,96^2*0,04^{n-2} \le [/mm] 0,05

[mm] 0,04^n +n*0,96*0,04^{n-1} [/mm] + [mm] \bruch{n!}{(n-2)!*2!}*0,96^2*0,04^{n-2} \le [/mm] 0,05

[mm] 0,04^n +n*0,96*0,04^{n-1} [/mm] + [mm] \bruch{n*(n-1)}{2}*0,96^2*0,04^{n-2} \le [/mm] 0,05

Nun könnte ich noch [mm] 0,04^{n-2} [/mm] ausklammern und ein bisschen zusammenfassen

[mm] 0,04^{n-2}*[0,04^2+ [/mm] n*0,96*0,04 [mm] +n*(n-1)*0,96^2] \le [/mm] 0,05

[mm] 0,04^{n-2}*[0,0016 [/mm]  + 0,0384*n [mm] +(n^2-n)*0,9216] \le [/mm] 0,05

[mm] 0,04^{n-2}*[0,0016 [/mm]  -0,88324*n [mm] +0,9216*n^2] \le [/mm] 0,05


Wenn das soweit richtig ist, wie geht es dann weiter?
Muss ich da probieren oder gibt es ein einfaches Verfahren? Oder kann ich bereits vorher die Lösung einfacher ermitteln?


Danke & Gruß!

        
Bezug
3xMindestens 3 Treffer: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 So 21.10.2018
Autor: abakus

Nach "Soweit sollte es stimmen" hast du in der Formel jeweils die Werte 0,04 und 0,96 vertauscht.

Aber egal, die Gleichung ist sowieso nur mit Näherungsverfahren bzw. elektronischen Hilfsmitteln zu lösen.

http://www.wolframalpha.com/input/?i=0.96%5En%2Bn*0.04*0.96%5E(n-1)%2B(n*n-n)%2F2*0.04%5E2*0.96%5E(n-2)%3D0.05

Du brauchst 156 Versuche.

Bezug
                
Bezug
3xMindestens 3 Treffer: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:16 So 21.10.2018
Autor: hase-hh


> Nach "Soweit sollte es stimmen" hast du in der Formel
> jeweils die Werte 0,04 und 0,96 vertauscht.
>  
> Aber egal, die Gleichung ist sowieso nur mit
> Näherungsverfahren bzw. elektronischen Hilfsmitteln zu
> lösen.
>  
> http://www.wolframalpha.com/input/?i=0.96%5En%2Bn*0.04*0.96%5E(n-1)%2B(n*n-n)%2F2*0.04%5E2*0.96%5E(n-2)%3D0.05
>  
> Du brauchst 156 Versuche.

Ok, aber wo soll ich die Wahrscheinlichkeiten vertauscht haben???

Trefferwahrscheinlichkeit (fehlerfreie Teile) p=0,96  und q = 0,04 (fehlerhafte Teile) ... das habe ich nicht vertauscht...



Ich erhalte durch Probieren:

Bei mindestens 3 Treffern muss n [mm] \ge [/mm] 3 sein.


n = 3     P = 22,96 %

n = 4     P = 1, 79 %

n = 5     P = 0,12 %

Also müsste n mindestens 4 sein.

Bezug
                        
Bezug
3xMindestens 3 Treffer: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 23.10.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]