matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Eigenwerte3x3 eigenvektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - 3x3 eigenvektoren
3x3 eigenvektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

3x3 eigenvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:18 Mo 31.01.2011
Autor: m4rio

Aufgabe
bestimmen sie die eigenvektoren:

[mm] \(A= \vmat{ 5 & -2 & 0 \\ 1 & 5 & -1 \\ 0 & -2 & 5 } [/mm]



hallo, habe zu der gleichen aufgabe hier die Eigenwerte [mm] \lambda1=\lambda2=\lambda3=5 [/mm] berechnet... nun sind die eigenvektoren dran!

da im skript nicht wirklich erklärt (es wird nur auf den gauss verwiesen), habe ich mir im netz eine "anleitung" besorgt... diese führt mich allerdings zu einem engpass...


[mm] \((A-\lambda*E)x=0 [/mm]


Ausgangsmatrix war  gegeben durch


$ [mm] \(A=\pmat{ 5 & -2 & 0 \\ 1 & 5 & -1 \\ 0 & -2 & 5} [/mm] $

Eigenwert [mm] \lambda1,2,3=5 [/mm]



$ [mm] \(A=\pmat{ 5 & -2 & 0 \\ 1 & 5 & -1 \\ 0 & -2 & 5}-5*\pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 } [/mm]


--> $ [mm] \(A=\pmat{ 0 & -2 & 0 \\ 1 & 0 & -1 \\ 0 & -2 & 0}*\vektor{x1 \\ x2 \\ x3}=0 [/mm]

-->

I  [mm] \(2x2=0 [/mm]

II  [mm] \(x1-x3=0 [/mm]

III  [mm] \(-2x2=0 [/mm]


da [mm] \(III [/mm] keine zusätzlichen Infos bringt, kann man sie denk ich wegstreichen

I  [mm] \(2x2=0 [/mm]

II  [mm] \(x1-x3=0 [/mm]

hier gehts nur leider nicht weiter...

        
Bezug
3x3 eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 01:18 Di 01.02.2011
Autor: Walde

Hi m4rio,

das heisst doch, dass für die Lösungen gelten muss [mm] x_2=0 [/mm] und [mm] x_1=x_3. [/mm] Da gibt es natürlich unendlich viele Möglichkeiten.

Eigenvektoren sind dann von der Gestalt [mm] \vektor{c \\ 0 \\ c}=c*\vektor{1 \\ 0 \\ 1}, c\not=0, [/mm] weil der Nullvektor per Definition kein Eigenvektor ist, soweit ich mich erinnere.

LG walde

Bezug
                
Bezug
3x3 eigenvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:28 Di 01.02.2011
Autor: m4rio

hey,

genau das  [mm] \(x=\lambda\vektor{1 \\ 0 \\ 1},\lambda\not=0 [/mm] sagt auch die musterlösung... die erklärung fehlte allerdings...


vielen dank!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]