matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionen3 Grenzwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - 3 Grenzwerte
3 Grenzwerte < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

3 Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:51 So 15.04.2007
Autor: celeste16

Aufgabe
a) [mm] \limes_{x\rightarrow0}(\bruch{sinx}{x})^{\bruch{3}{x^{2}}} [/mm]

[mm] b)\limes_{x\rightarrow3}\bruch{sin(\bruch{x\pi}{2})}{(x-3)^{2}} [/mm]

c) [mm] \limes_{x\rightarrow0+}\bruch{ln(sin5x)}{ln(sin3x)} [/mm]


ich steh bei allen 3 auf'm schlauch. alle meine ansätze haben sich irgendwie im sand verlaufen.

könnt ihr mir die techniken verraten mit denen ich an die einzelnen aufgaben rangehen sollte?

        
Bezug
3 Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 11:56 So 15.04.2007
Autor: Hund

Hallo,

den ersten Grenzwert musst du mit exp um schreiben und die Stetigkeit ausnutzen, d.h. du kannst den Grenzwert in die Funktion mit reinziehen. Bei den anderen Grenzwerten musst du l´hospital anwenden. Einige Beispiele sind in der MatheBank vorgerechnet, bei deinen Aufgaben gehts genauso.

Ich hoffe, es hat dir geholfen.

Gruß
Hund


Bezug
                
Bezug
3 Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 So 15.04.2007
Autor: celeste16

danke erstmal, ich werd die aufgaben nochmal rechnen und meine versuche hier einstellen. aber ich verstehe nicht wieso ich beim 2. l'hospital verwenden darf: es ist doch nicht 0/0, sondern -1/0, womit die voraussetzung nicht mehr gegeben ist?

so, hab mich derweil mit den anderen beschäftigt:

c) = [mm] \limes_{x\rightarrow0+}\bruch{5cos5xsin3x}{3cos3xsin5x} [/mm] = [mm] \limes_{x\rightarrow0+}\bruch{5cos5xtan3x}{3sin5x} [/mm] = [mm] \limes_{x\rightarrow0+}\bruch{-25cos5xtan3x + 15cos5x + 15cos5xtan²3x}{15cos5x} [/mm] = [mm] \bruch{15cos5x}{15cos5x} [/mm] = 1

a) = [mm] \limes_{x\rightarrow0}e^{\bruch{3ln\bruch{sinx}{x}}{x^{2}}} [/mm] = [mm] e^\limes_{x\rightarrow0}{\bruch{3}{x^{2}}*0} [/mm]

aber da hab ich immernoch doe 0 im nenner und das geht nicht. also hab ich irgendwas flasch gemacht

Bezug
                        
Bezug
3 Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 So 15.04.2007
Autor: Hund

Hallo,
bei b) habe ich mich verlesen. Das muss dann divergieren.
c) sieht soweit richtig aus, wenn ich mich jetzt nicht vertue.
Bei a) kannst du den Limes in den Exponenten reinnehmen, da exp stetig ist. Dann musst du den inneren Grenzwert bestimmen und in exp einsetzten. Der Term in In geht gegen 0, also In(0)=-unendlich und dann wird noch mit etwas großem und positiven, 1/x² multipliziert, also müsste der innere Term gegen -unendlich gehen und der Grenzwert folglich 0 sein.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
                                
Bezug
3 Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 So 15.04.2007
Autor: celeste16

danke nochmal für die antwort, aber das mit a) habe immer noch nicht verstanden. habe das gefühl dass ich das noch nie gemacht habe. kannst du es mir an dem oder an einem ähnlichen beispiel explizit zeigen?

Bezug
                                        
Bezug
3 Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 So 15.04.2007
Autor: Hund

Hallo,

nehmen wir z.B. [mm] x^{x} [/mm] für x gegen 0+.
Dann:
lim [mm] x^{x}=lim [/mm] exp(xlog(x))=exp (lim xlog(x)), da exp stetig (s. Definition Stetigkeit)
Frage: Was ist nun lim xlog(x) für x gegen 0+?
Antwort: Wende l´hospital an.
lim xlog(x)        das ist der Fall 0*-unendlich,also umschreiben
=lim log(x)/(1/x)    l´hospital anwenden
=lim (1/x)/(-1/x²)   ausrechnen
=lim -x                   x geht gegen 0+,also
=0
Oben einsetzten ergibt:
lim [mm] x^{x}=exp [/mm] (0)=1 für x gegen 0+.

Bei deinem Beispiel habe ich genau das gleiche gemacht. Nur den inneren Grenzwert habe ich bestimmt in dem ich mir die einzelnen Terme genau angeguckt habe.

Ich hoffe, es hat dir geholfen.

Gruß
Hund


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]