matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Gleichungssysteme3 Gleichungen, 5 Unbekannte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Gleichungssysteme" - 3 Gleichungen, 5 Unbekannte
3 Gleichungen, 5 Unbekannte < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

3 Gleichungen, 5 Unbekannte: Lineares Gleichungssystem löse
Status: (Frage) beantwortet Status 
Datum: 15:08 Mo 10.12.2007
Autor: Rudi1003

Aufgabe
2x1 + x2 + ax3 + x4 = 0
x1 + ax4 - ax5 = 1
2x2 + x3 + 2x5 = 2


a) Bestimme Lösungen für a=1
b) Für welche a [mm] \in \IR [/mm] ist das Gleichungssystem unlösbar
c) Gibt es ein a [mm] \in \IR [/mm] für welches das gleichungssystem eindeutig lösbar ist?

Ich habe keine Ahnung mit welchem Ansatz ich da ran gehen soll. Meiner Meinung ist es nicht möglich, da ich 5 Unbekannte habe, aber nur drei Gleichungen.






Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
3 Gleichungen, 5 Unbekannte: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Di 11.12.2007
Autor: Somebody


> 2x1 + x2 + ax3 + x4 = 0
>  x1 + ax4 - ax5 = 1
>  2x2 + x3 + 2x5 = 2
>  
>
> a) Bestimme Lösungen für a=1
>  b) Für welche a [mm]\in \IR[/mm] ist das Gleichungssystem unlösbar
>  c) Gibt es ein a [mm]\in \IR[/mm] für welches das gleichungssystem
> eindeutig lösbar ist?
>  Ich habe keine Ahnung mit welchem Ansatz ich da ran gehen
> soll.

Bringe das System auf Stufenform (Gauss-Verfahren). Also etwa auf die Form:

[mm]\begin{array}{rcrcrcrcrcl|} x_1 & & & & & +&a x_4 &-& ax_5 &=& 1\\ & &x_2 &+& a x_3 &+& (1-2a)x_4 &+& 2ax_5 &=& -2\\ & & & &(1-2a)x_3 &-& 2(1-2a)x_4 &+& 2(1-2a)x_5 &=& 6\\\cline{1-11} \end{array}[/mm]


Betrachte dann vor allem den Einfluss des Wertes von $a$ auf die letzte Gleichung der Stufenform (keine Lösung oder unendlich viele Lösungen).

> Meiner Meinung ist es nicht möglich, da ich 5
> Unbekannte habe, aber nur drei Gleichungen.

In diesem Falle hat das System einfach unendlich viele Lösungen, bei denen 2 (überzählige) der 5 Variablen als "freie Parameter" für die Lösungsmenge verwendet werden.


Bem: Das System hat für [mm] $a=\frac{1}{2}$ [/mm] keine Lösung (weil in diesem Falle die letzte Gleichung der Stufenform auf der linken Seite $0$ und auf der rechten $=6$ wird) und für [mm] $a\neq\frac{1}{2}$ [/mm] unendlich viele Lösungen (in diesem Falle kann man die Werte von zwei der drei Variablen, z.B. von [mm] $x_4$ [/mm] und [mm] $x_5$, [/mm] in der letzten Gleichung der Stufenform willkürlich wählen und daraus, d.h. in Abhängigkeit von dieser Wahl, eine Lösung des Gesamtsystems bestimmen). Eine eindeutige Lösung hat das System also nie.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]