matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis3-fach Integrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - 3-fach Integrale
3-fach Integrale < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

3-fach Integrale: Frage???
Status: (Frage) beantwortet Status 
Datum: 18:45 So 10.07.2005
Autor: MisterMarc

Hallo Leute,

Wir habe jetzt Dreifachintegrale angefangen und ich übe sie zur Zeit und könnte Hilfe von euch gebrauchen.

Die Frage lautet wiefolgt:

4. Man schreibe  [mm] \integral \integral \integralD [/mm]
f(x; y; z)dxdydz als iteriertes Integral:
a) D = ((x; y; z) : 2z  [mm] \ge [/mm]  x² + y²; x² + y² + z²  [mm] \le [/mm] 3).
b) D ist begrenzt durch die Flächen x² + y² = 1; z = 0; z = 1.
c)Fläche begrenzt durch z = x² + y², z = 1.
d) x² + y² = a²; x² + y² - z² =- a².

Es wäre nett, wenn mir jemand helfen kann. Danke

        
Bezug
3-fach Integrale: Eigene Ansätze?
Status: (Antwort) fertig Status 
Datum: 20:11 So 10.07.2005
Autor: MathePower

Hallo MisterMarc,

> 4. Man schreibe  [mm]\integral \integral \integralD[/mm]
>  f(x; y;
> z)dxdydz als iteriertes Integral:
>  a) D = ((x; y; z) : 2z  [mm]\ge[/mm]  x² + y²; x² + y² + z²  [mm]\le[/mm]
> 3).
>  b) D ist begrenzt durch die Flächen x² + y² = 1; z = 0; z
> = 1.
>  c)Fläche begrenzt durch z = x² + y², z = 1.
>  d) x² + y² = a²; x² + y² - z² =- a².

poste uns doch einmal Deine eigenen Ansätze.

Zunächst mußt Du ja mal den Bereich festlegen, zwischen welchen Grenzen Du zu integrieren hast.

Das Integral schreibt sich dann so:

[mm]\int\limits_{x_0 }^{x_1 } {\int\limits_{\varphi _0 \left( x \right)}^{\varphi _1 \left( x \right)} {\int\limits_{\psi _0 \left( {x,\;y} \right)}^{\psi _1 \left( {x,\;y} \right)} {f\left( {x,\;y,\;z} \right)\;dz\;dy\;dx} } } [/mm]


Gruß
MathePower

Bezug
                
Bezug
3-fach Integrale: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:12 So 10.07.2005
Autor: MisterMarc

1. Meine eigenen Ansätze sind schlecht und unverwehrtbar..sorry

2. In der Aufgabe geht es darum die Integrationsgrenzen festzulegen (unabhängig von der funktion)

Bezug
                        
Bezug
3-fach Integrale: Aufgabe 4a)
Status: (Antwort) fertig Status 
Datum: 22:04 So 10.07.2005
Autor: MathePower

Hallo MisterMarc,

> 1. Meine eigenen Ansätze sind schlecht und
> unverwehrtbar..sorry

das macht doch nichts.

>  
> 2. In der Aufgabe geht es darum die Integrationsgrenzen
> festzulegen (unabhängig von der funktion)

zu Aufgabe 4a)

Da sind die zwei Gleichungen

[mm] \begin{gathered} x^2 \; + \;y^2 \; \leqslant \;2\;z \hfill \\ x^2 \; + \;y^2 \; + \;z^2 \; \leqslant \;3 \hfill \\ \end{gathered} [/mm]

Die erste Gleichung ist die Kreisgleichung. Das heisst:

[mm] \begin{gathered} x^2 \; + \;y^2 \; = \;2\;z \hfill \\ \Rightarrow \;y\; \in \;\left[ { - \sqrt {2\;z\; - \;x^2 } ,\; + \sqrt {2\;z\; - \;x^2 } } \right]\;x\; \in \;\left[ { - \sqrt {2\;z} ,\; + \;\sqrt {2\;z} } \right] \hfill \\ \end{gathered} [/mm]

Nun bleibt noch die Grenze für z festzulegen. Diese erhältst Du wenn [mm]x^{2}\;+\;y^{2}[/mm] durch [mm]2\;z[/mm] ersetzt wird:

[mm] \begin{gathered} z^2 \; + \;2\;z\; = \;3 \hfill \\ \Rightarrow \;\left( {z\; + \;1} \right)^2 \; = \;4 \hfill \\ \Rightarrow z\; \in \;\left[ { - 3,\;1} \right] \hfill \\ \end{gathered} [/mm].

Nun da die Gleichung [mm]x^2 \; + \;y^2 \; = \;2\;z[/mm] nur für [mm]z\;\ge\;0[/mm] Lösungen hat, gilt [mm]z\; \in \;\left[ { 0,\;1} \right][/mm].

Es ergeben sich also die Integrationsgrenzen zu:

[mm] \begin{gathered} y\; \in \;\left[ { - \sqrt {2\;z\; - \;x^2 } ,\; + \sqrt {2\;z\; - \;x^2 } } \right] \hfill \\ x\; \in \;\left[ { - \sqrt {2\;z} ,\; + \;\sqrt {2\;z} } \right] \hfill \\ z\; \in \;\left[ {0,\;1} \right] \hfill \\ \end{gathered} [/mm]

Ich hoffe, daß Du die anderen Teilaufgaben jetzt auch lösen kannst.

Gruß
MathePower



Bezug
                                
Bezug
3-fach Integrale: Frage
Status: (Frage) beantwortet Status 
Datum: 00:20 Mo 11.07.2005
Autor: steelscout

Hi,
ich hätt dazu mal noch eine Frage. Es wurden also die Grundbedingen so zerlegt, dass man die Intervalle für die Variablen bekam, so dass die Bedingungen erfüllt sind, richtig?
Jetzt ist doch aber beispielsweise der Punkt [mm] (0,0,\wurzel{3}) [/mm] auch ein Punkt des Gebietes, der die Gleichungen erfüllt, aber z ist ja nach der Rechnung nur [mm] \in [/mm] [0,1].
Sorry, falls es ne dämliche Frage ist. Ansonsten hätt ich das nämlich auch raus, aber das verwirrt mich.

Bezug
                                        
Bezug
3-fach Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 08:53 Mo 11.07.2005
Autor: Paulus

Hallo steelscout

das liegt daran, dass Mathepowers Antwort falsch ist!

Mach doch mal eine Zeichnung.

Wenn du die erste Ungleichung als Gleichung schreibst, dann stellet du fest, dass es sich um ein Rotationsparaboloie handelt.
In Zylinderkoordinaten wäre das ja [mm] $z=\bruch{r^2}{2}$. [/mm]
Um die erste Ungleichung zu erfüllen, sind also die Punkte zu betrachten, die "innerhalb" des Paraboloids liegen.
Die zweite Ungleichung sagt noch, dass die Punkte innerhalb der Ursprungskugel liegen müssen, deren Radius den Wert [mm] $\wurzel{3}$ [/mm] hat.

Du kannst also leicht die Zeichnung der Situation machen, wie sie in der x-z-Ebene vorliegt: [mm] $z=\bruch{x^2}{2}$ [/mm] und [mm] $x^2+z^2=3$. [/mm] Die Fläche zwischen diesen zwei Kurven rotiert um die z-Achse. An der Zeichnung siehst du auch auf einen Blick, dass es nicht sinnvoll ist, zuerst die Grenzen für $x_$ (oder $y_$) festzulegen, da diese im unteren Teil durch ein Paraboloid festgelegt werden, im oberen Teil hingegen durch eine Kugel. Das führt zu Fallunterscheidungen!

Wenn du hingegen zuerst die z-Grenzen festlegst, dann stellst du unschwer fest, dass überall die Grenzen so festgelegt sind:

[mm] $\left[x^2+y^2, \wurzel{3-x^2-y^2}\right]$ [/mm]

Somit kannst du die Figur parallel zur z-Achse auf die x-y-Ebene projizieren. Kamit ergibt sich ein Kreis mit Radius [mm] $\wurzel{2}$. [/mm]

Da kannst du zum Beispiel zuerst die Grenzen für $y_$ festlegen, damit alles im Kreis liegt:

[mm] $-\wurzel{2-x^2}\le [/mm] y [mm] \le +\wurzel{2-x^2}$ [/mm]

Die Projektion des Kreises parallel zur y-Achse auf die x-Achse ergibt dann noch die x-Strecke von [mm] $-\wurzel{2}$ [/mm] bis [mm] $+\wurzel{2}$ [/mm]

Damit sind die Grenzen festgelegt.

Mit vielen Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]