matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegration2xpartielle Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - 2xpartielle Integration
2xpartielle Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2xpartielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Mi 04.02.2009
Autor: Englein89

Hallo,

ich soll das Integral

[mm] \integral e^x [/mm] sin x bestimmen

Ich wollte partiell Integrieren, also:
f=sin x,  f'=cos x
[mm] g'=e^x, g=e^x [/mm]

[mm] \integral e^x [/mm] sinx= [mm] e^x [/mm] sinx - [mm] \integral [/mm] cos x [mm] e^x [/mm]

nun

f=cos x  f'=- sin x
g= [mm] e^x, g'=e^x [/mm]

also:
[mm] \integral [/mm] cos x [mm] e^x [/mm] = cos x [mm] e^x [/mm] + [mm] \integral [/mm] sin x [mm] e^x [/mm]

Aber was muss ich nun tun? Ich sehe irgendwie nicht das Ziel der ganzen Rechnung, weder bei einfacher noch bei mehrmaliger partieller Integration. Kann jemand helfen?

        
Bezug
2xpartielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Mi 04.02.2009
Autor: reverend

Hallo Englein,

hattest Du die Aufgabe nicht neulich schonmal?

Du kannst jetzt die beiden partiellen Integrationsschritte wie folgt zusammenfassen:

[mm] \int{e^x\sin{x}}=e^x\sin{x}-\blue{\int{e^x\cos{x}}}=e^x\sin{x}-\blue{\left(e^x\cos{x}+\int{e^x\sin{x}}\right)} [/mm]

Jetzt behandelst Du Dein gesuchtes Integral, das ja ganz links und ganz rechts vorkommt, als wäre es eine Variable und formst die beiden äußeren Seiten der obigen Gleichung um:

[mm] 2*\int{e^x\sin{x}}=e^x\sin{x}-e^x\cos{x} [/mm]

woraus folgt:

[mm] \int{e^x\sin{x}}=e^x\ \bruch{\sin{x}-\cos{x}}{2} [/mm]

Fertig.

Grüße,
reverend

Bezug
                
Bezug
2xpartielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:14 Mi 04.02.2009
Autor: Englein89


>  
> hattest Du die Aufgabe nicht neulich schonmal?
>  
> Du kannst jetzt die beiden partiellen Integrationsschritte
> wie folgt zusammenfassen:
>  
> [mm]\int{e^x\sin{x}}= ist ja mein Ausgangsintegral e^x\sin{x}-\blue{\int{e^x\cos{x}}} ist ja meine erste Integration =e^x\sin{x} wo kommt das her? -\blue{\left(e^x\cos{x}+\int{e^x\sin{x}}\right)}[/mm]

und das?

>  
> Jetzt behandelst Du Dein gesuchtes Integral, das ja ganz
> links und ganz rechts vorkommt, als wäre es eine Variable
> und formst die beiden äußeren Seiten der obigen Gleichung
> um:
>  
> [mm]2*\int{e^x\sin{x}}=e^x\sin{x}-e^x\cos{x}[/mm]
>  
> woraus folgt:
>  
> [mm]\int{e^x\sin{x}}=e^x\ \bruch{\sin{x}-\cos{x}}{2}[/mm]
>  

Ja, nur irgendwie habe ich mir nicht genau aufgeschrieben, wieso ich so umformen konnte.

Ich kann nicht ganz nachvollziehen was aus welcher Gleichung rausgezogen und dann miteinander verrechnet wird. Wahrscheinlich willst du das mit dem blau deutlich machen? Aber ich sehe das irgendwie grad kein System, kannst du mir auf die Sprünge helfen bitte?

Bezug
                        
Bezug
2xpartielle Integration: normale Gleichung
Status: (Antwort) fertig Status 
Datum: 16:17 Mi 04.02.2009
Autor: Roadrunner

Hallo Englein!


Im Prinzip hast Du eine Gleichung der Art
[mm] $$\blue{X} [/mm] \ = \ [mm] \text{irgendwas}-\blue{X}$$ [/mm]
vorliegen.
Dies kann man nun wie gewohnt umformen zu:
[mm] $$\blue{X} [/mm] \ = \ [mm] \bruch{\text{irgendwas}}{2}$$ [/mm]

Gruß vom
Roadrunner


Bezug
                                
Bezug
2xpartielle Integration: so blau, blau, blau
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:40 Mi 04.02.2009
Autor: reverend

Hallo Englein,

mein Blau stammt aus dem zweiten Durchgang partieller Integration und ist nicht zu verwechseln mit Roadrunners Blau, das die gleichen X hervorhebt.

Erster Durchgang:
Integral mit Sinus = sowienoch - Integral mit Cosinus

Zweiter Durchgang:
Integral mit Cosinus = wasanderes + Integral mit Sinus

Zweite Gleichung in erste eingesetzt:
Integral mit Sinus = sowienoch - wasanderes - Integral mit Sinus

Klar?

;-)
reverend

Bezug
                                        
Bezug
2xpartielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:48 Mi 04.02.2009
Autor: Englein89

[lichtaufgegangen]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]