matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Eigenwerte2x2 Jordansche Normalform
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Eigenwerte" - 2x2 Jordansche Normalform
2x2 Jordansche Normalform < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2x2 Jordansche Normalform: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:03 Do 10.03.2011
Autor: knuck1es

Aufgabe
Finden sie die Jordansche Normalform der Matrix
[mm] \begin{pmatrix} -7 & 9 \\ -4 & 5 \end{pmatrix} [/mm]

Ich habs das char. Polynom berechnet: [mm] (x+1)^2 [/mm]
-> EW = -1 mit algebraischer Vielfachheit 2
daraus hab ich dann noch den ersten EV gefunden welcher
[mm] \begin{pmatrix} -6 & 9 \\ -4 & 6 \end{pmatrix}\vektor{x\\y} [/mm] = [mm] \vektor{0\\0} [/mm]

-> EV = [mm] \vektor{3\\2} [/mm]

Dann glaube ich, dass ich das Gleichungssystem

[mm] \begin{pmatrix} -6 & 9 \\ -4 & 6 \end{pmatrix}\vektor{x\\y} [/mm] = [mm] \vektor{3\\2} [/mm] berechnen muss, aber ab hier bin ich mir unsicher.

Danke für die Hilfe im voraus
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheplanet.com/

        
Bezug
2x2 Jordansche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Do 10.03.2011
Autor: MathePower

Hallo knuckles,

[willkommenmr]


> Finden sie die Jordansche Normalform der Matrix
> [mm]\begin{pmatrix} -7 & 9 \\ -4 & 5 \end{pmatrix}[/mm]
>  Ich habs das char.
> Polynom berechnet: [mm](x+1)^2[/mm]
>  -> EW = -1 mit algebraischer Vielfachheit 2

>  daraus hab ich dann noch den ersten EV gefunden welcher
>  [mm]\begin{pmatrix} -6 & 9 \\ -4 & 6 \end{pmatrix}\vektor{x\\y}[/mm] =
> [mm]\vektor{0\\0}[/mm]
>  
> -> EV = [mm]\vektor{3\\2}[/mm]
>  
> Dann glaube ich, dass ich das Gleichungssystem
>  
> [mm]\begin{pmatrix} -6 & 9 \\ -4 & 6 \end{pmatrix}\vektor{x\\y}[/mm] =
> [mm]\vektor{3\\2}[/mm] berechnen muss, aber ab hier bin ich mir
> unsicher.


Genauso ist es.


>  
> Danke für die Hilfe im voraus
>  Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  http://www.matheplanet.com/


Gruss
MathePower

Bezug
                
Bezug
2x2 Jordansche Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:47 Do 10.03.2011
Autor: knuck1es

Da bekomm ich dann [mm] \vektor{1\\1} [/mm] als Ergebnis.

Dh meine Basis ist
[mm] \left\{ \vektor{1\\1};\vektor{3\\2} \right\} [/mm]

und mein Jordansche Normalform ist

[mm] \pmat{ -1 & 1 \\ 0 & -1 } [/mm]

Stimmt das so?

und wie Zerlege ich das jetzt in S^-1 A S = [mm] \pmat{ -1 & 1 \\ 0 & -1 } [/mm]

LG

Bezug
                        
Bezug
2x2 Jordansche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Do 10.03.2011
Autor: MathePower

Hallo knuck1es,

> Da bekomm ich dann [mm]\vektor{1\\1}[/mm] als Ergebnis.
>  
> Dh meine Basis ist
> [mm] \left\{ \vektor{1\\1};\vektor{3\\2} \right\}[/mm]
>  
> und mein Jordansche Normalform ist
>  
> [mm]\pmat{ -1 & 1 \\ 0 & -1 }[/mm]
>  
> Stimmt das so?


Ja. [ok]



>  
> und wie Zerlege ich das jetzt in S^-1 A S = [mm]\pmat{ -1 & 1 \\ 0 & -1 }[/mm]
>  


S besteht aus den ermittelten Vektoren.


> LG



Gruss
MathePower

Bezug
                                
Bezug
2x2 Jordansche Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:49 Do 10.03.2011
Autor: knuck1es

Eine Frage haette ich noch bezüglich der quadratischen Form.
Ich benutze ein Skript einer Kollegin und bin dabei auf eine Ungereimtheit gestoßen.
Und zwar definieren wir:
q:V [mm] \to [/mm] K heißt quadratische Form wenn sie folgende zwei Eigenschaften besitzt.
(i) [mm] q(\alpha [/mm] v) = [mm] \alpha^2 [/mm] q(v) [mm] \forall [/mm] v [mm] \in [/mm] V
(ii) [mm] \delta: [/mm] VxV [mm] \to [/mm] K, [mm] \delta [/mm] (v,w) = q(v + w) - q(v) - q(w) ist symmetrische Bilinearform auf V

Aber im nächsten Schritt definieren wir, wenn:
(i) q(v) = [mm] \delta [/mm] (v,v) [mm] \forall [/mm] v [mm] \in [/mm] V
(ii) [mm] \delta [/mm] (v,w) = 1/2 ( q(v+w) - q(v) -q(w))
so sagen wir [mm] \delta [/mm] und q würden zueinander gehören.

Stimmt das so? Ich finde es seltsam das ich zwei verschiedene Gleichheiten habe.
Btw: Eigentlich heißt die Bilinearform Sigma, jedoch fand ich das Sigma Zeichen nicht.
LG

Bezug
                                        
Bezug
2x2 Jordansche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 00:19 Fr 11.03.2011
Autor: felixf

Moin!

> Eine Frage haette ich noch bezüglich der quadratischen
> Form.

Mal ganz dumm gefragt: was hat das mit der Jordanschen Normalform zu tun?

>  Ich benutze ein Skript einer Kollegin und bin dabei auf
> eine Ungereimtheit gestoßen.
>  Und zwar definieren wir:
>  q:V [mm]\to[/mm] K heißt quadratische Form wenn sie folgende zwei
> Eigenschaften besitzt.
>  (i) [mm]q(\alpha[/mm] v) = [mm]\alpha^2[/mm] q(v) [mm]\forall[/mm] v [mm]\in[/mm] V
>  (ii) [mm]\delta:[/mm] VxV [mm]\to[/mm] K, [mm]\delta[/mm] (v,w) = q(v + w) - q(v) -
> q(w) ist symmetrische Bilinearform auf V

Ja, so definiert man das fuer beliebige Koerper $K$. Aus (ii) folgt [mm] $\delta(v, [/mm] v) = 2 q(v)$.

> Aber im nächsten Schritt definieren wir, wenn:
>  (i) q(v) = [mm]\delta[/mm] (v,v) [mm]\forall[/mm] v [mm]\in[/mm] V
>  (ii) [mm]\delta[/mm] (v,w) = 1/2 ( q(v+w) - q(v) -q(w))
> so sagen wir [mm]\delta[/mm] und q würden zueinander gehören.

Das geht nur, wenn in $K$ die $2 = 1 + 1$ nicht gleich 0 ist (also wenn die Charakteristik von $K$ nicht 2 ist, falls dir das schon was sagt). In dem Fall unterscheiden sich die beiden [mm] $\delta$s [/mm] um einen Faktor 2.

Die zweite "Definition" ist halt schoener, daman $q(v) = [mm] \delta(v, [/mm] v)$ hat (so erhaelt man meistens quadratische Formen -- wenn eben nicht $2 = 0$ in $K$ gilt). Die erste Definition hat dagegen den Vorteil, dass sie ueber jeden Koerper funktioniert. Falls $2 = 0$ in $K$ gilt, laesst sich eben nicht jede quadratische Form $q$ als $q(v) = [mm] \delta(v, [/mm] v)$ mit einer symmetrischen Bilinearform [mm] $\delta$ [/mm] darstellen.

>  Btw: Eigentlich heißt die Bilinearform Sigma, jedoch fand
> ich das Sigma Zeichen nicht.

Um [mm] $\sigma$ [/mm] zu bekommen, musst du \sigma schreiben. :)

LG Felix


Bezug
                
Bezug
2x2 Jordansche Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:12 Fr 11.03.2011
Autor: felixf

Moin!

> > Finden sie die Jordansche Normalform der Matrix
> > [mm]\begin{pmatrix} -7 & 9 \\ -4 & 5 \end{pmatrix}[/mm]
>  >  Ich habs das char.
> > Polynom berechnet: [mm](x+1)^2[/mm]
>  >  -> EW = -1 mit algebraischer Vielfachheit 2

>  >  daraus hab ich dann noch den ersten EV gefunden
> welcher
>  >  [mm]\begin{pmatrix} -6 & 9 \\ -4 & 6 \end{pmatrix}\vektor{x\\y}[/mm] =
> > [mm]\vektor{0\\0}[/mm]
>  >  
> > -> EV = [mm]\vektor{3\\2}[/mm]
>  >  
> > Dann glaube ich, dass ich das Gleichungssystem
>  >  
> > [mm]\begin{pmatrix} -6 & 9 \\ -4 & 6 \end{pmatrix}\vektor{x\\y}[/mm] =
> > [mm]\vektor{3\\2}[/mm] berechnen muss, aber ab hier bin ich mir
> > unsicher.
>  
>
> Genauso ist es.

Muss man nicht, wenn man nur die JNF bestimmen will (und nicht die Transformationsmatrix) reicht es aus [mm] $\dim \ker \begin{pmatrix} -6 & 9 \\ -4 & 6 \end{pmatrix}$ [/mm] zu bestimmen. Und wenn man die Aufgabenstellung woertlich nimmt, steht dort nichts von der Transformationsmatrix. :)

Die Dimension ist hier 1, womit die JNF gleich [mm] $\begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$ [/mm] sein muss. (Wenn die Dimension 2 waer, waer die JNF gleich [mm] $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.) [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]