matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizen2x2-Matrix bildet ggT
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - 2x2-Matrix bildet ggT
2x2-Matrix bildet ggT < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2x2-Matrix bildet ggT: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:09 Mo 01.10.2012
Autor: triad

Aufgabe
Für [mm] a,b\in\IZ [/mm] sei [mm] d\in\IZ [/mm] ein ggT von a und b. Zeige, dass eine Matrix [mm] A\in M_{2\times2}(\IZ) [/mm] existiert, mit [mm] \operatorname{det}(A)=1 [/mm] und [mm] A\cdot{\vektor{a\\b}}=\vektor{d\\0}. [/mm]

Hallo.

Man soll hier eine Matrix finden, deren Determinante 1 ist und die einen Vektor auf einen Vektor abbildet, dessen erste Komponente der ggT der beiden Komponenten des ersten Vektors ist, die zweite Komponente soll 0 sein. Hat jemand eine Idee wie man da heran gehen kann? Für mich ist es schwer vorstellbar, dass man mit einer "kleinen" 2x2-Matrix ein ggT bilden kann.

        
Bezug
2x2-Matrix bildet ggT: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 Mo 01.10.2012
Autor: felixf

Moin!

> Für [mm]a,b\in\IZ[/mm] sei [mm]d\in\IZ[/mm] ein ggT von a und b. Zeige, dass
> eine Matrix [mm]A\in M_{2\times2}(\IZ)[/mm] existiert, mit
> [mm]\operatorname{det}(A)=1[/mm] und
> [mm]A\cdot{\vektor{a\\b}}=\vektor{d\\0}.[/mm]
>  
> Man soll hier eine Matrix finden, deren Determinante 1 ist
> und die einen Vektor auf einen Vektor abbildet, dessen
> erste Komponente der ggT der beiden Komponenten des ersten
> Vektors ist, die zweite Komponente soll 0 sein. Hat jemand
> eine Idee wie man da heran gehen kann? Für mich ist es
> schwer vorstellbar, dass man mit einer "kleinen" 2x2-Matrix
> ein ggT bilden kann.

Wenn $d = ggT(a, b)$ ist, dann gibt es doch $x, y [mm] \in \IZ$ [/mm] mit $d = a x + b y$. Damit ist $1 = [mm] \frac{a}{d} \cdot [/mm] x - [mm] \frac{-b}{d} [/mm] y$. Das liefert dir die Eintraege einer ganzzahligen $2 [mm] \times [/mm] 2$-Matrix mit Determinante 1.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]