matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-102 versch. Ergebnisse(Gleichg.)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - 2 versch. Ergebnisse(Gleichg.)
2 versch. Ergebnisse(Gleichg.) < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2 versch. Ergebnisse(Gleichg.): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 So 18.05.2014
Autor: Giraffe

Aufgabe
[mm] \bruch{y-5}{2} [/mm] - [mm] \bruch{y-5}{4} [/mm] = [mm] \bruch{5}{4} [/mm] + [mm] \bruch{y}{4} [/mm]


Nabend,
diese Gleichung habe ich 2x gelöst.

1.

den ersten Summand in Viertel umgewandelt u. gleich mit dem zweiten vermust

[mm] \bruch{2y-10-y+5}{4} [/mm] = [mm] \bruch{5+y}{4} [/mm]       I*4

y-5 = 5+y

Man sieht das kann nicht gleich sein.



2.

[mm] \bruch{y-5}{2} [/mm] - [mm] \bruch{y-5}{4} [/mm] = [mm] \bruch{5}{4} [/mm] + [mm] \bruch{y}{4} [/mm]    


jetzt soll der zweite Summand rüber auf die re Seite. Dann

[mm] \bruch{y-5}{2} [/mm] = [mm] \bruch{5+y+y-5}{4} [/mm]

[mm] \bruch{y-5}{2} [/mm] = [mm] \bruch{2y}{4} [/mm]

[mm] \bruch{y-5}{2} [/mm] = [mm] \bruch{y}{2} [/mm]      I*2

y-5 =y

Das ist auch nicht gleich. Aber eines von beiden kann doch nur stimmen oder?

------------------------------------------------------------------------------------------

Wo ist der Fehler?
Oder gibt es keinen, weil es daran liegt, dass die Gleichung von vornherein nicht gleich ist.
Ich habe es schon x-mal immer wieder gerechnet, ich kann den Fehler nicht finden.
Wo ist denn hier das Würmelein?

Für Antw. Hilfe u. Klärung - wie immer
BESTEN DANK
Sabine





        
Bezug
2 versch. Ergebnisse(Gleichg.): Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 So 18.05.2014
Autor: angela.h.b.


> [mm]\bruch{y-5}{2}[/mm] - [mm]\bruch{y-5}{4}[/mm] = [mm]\bruch{5}{4}[/mm] +
> [mm]\bruch{y}{4}[/mm]
>  
> Nabend,
>  diese Gleichung habe ich 2x gelöst.
>  
> 1.
>  
> den ersten Summand in Viertel umgewandelt u. gleich mit dem
> zweiten vermust
>  
> [mm]\bruch{2y-10-y+5}{4}[/mm] = [mm]\bruch{5+y}{4}[/mm]       I*4
>  
> y-5 = 5+y
>  
> Man sieht das kann nicht gleich sein.

Hallo,

Du suchst ja alle Zahlen y, für welche  die Gleichung [mm] \bruch{2y-10-y+5}{4}[/mm] [/mm] = [mm][mm] \bruch{5+y}{4} [/mm] richtig ist.

Du hast herausgefunden: alle y, für welche y-5=y+5 bzw. 5=-5 richtig ist, lösen die Gleichung.

Welche sind das? Keine!

>  
>
>
> 2.
>  
> [mm]\bruch{y-5}{2}[/mm] - [mm]\bruch{y-5}{4}[/mm] = [mm]\bruch{5}{4}[/mm] +
> [mm]\bruch{y}{4}[/mm]    
>
>
> jetzt soll der zweite Summand rüber auf die re Seite.
> Dann
>  
> [mm]\bruch{y-5}{2}[/mm] = [mm]\bruch{5+y+y-5}{4}[/mm]
>
> [mm]\bruch{y-5}{2}[/mm] = [mm]\bruch{2y}{4}[/mm]
>
> [mm]\bruch{y-5}{2}[/mm] = [mm]\bruch{y}{2}[/mm]      I*2
>  
> y-5 =y

Du hast herausgefunden: alle y mit y-5=y, also mit -5=0, lösen die Gleichung. Also keins.


> Das ist auch nicht gleich. Aber eines von beiden kann doch
> nur stimmen oder?

Es gibt keine Lösung.
Ob da am Ende steht: 1=0 oder -5=5 oder [mm] \pi=-\wurzel{2} [/mm] ist völlig wurscht.
Kein y der Welt kann diese Gleichungen wahr machen.

LG Angela


Bezug
        
Bezug
2 versch. Ergebnisse(Gleichg.): Antwort
Status: (Antwort) fertig Status 
Datum: 22:04 So 18.05.2014
Autor: Marcel

Hallo,

nur kurz zur Ergänzung zu Angelas Antwort:
1. Soweit ich das sehe, hast Du jedes Mal absolut korrekt gerechnet.

2. Deine "Lösungsgleichungen" sind äquivalent:

Aus

    $y-5=5+y$

hättest Du noch

    [mm] $-5=5\,$ [/mm]

folgern können (was nicht erfüllbar ist).

Daraus folgt dann

    [mm] $-10=0\,$ [/mm]

und daraus dann auch

    [mm] $-5=0\,$ [/mm]

und damit auch

    [mm] $y-5=y\,.$ [/mm]

Analog könntest Du aus

    [mm] $y-5=y\,$ [/mm]

dann auch

    [mm] $y-5=5+y\,$ [/mm]

herleiten. Wobei diese Umformungen dann doch "eigentlich etwas unnötig"
sind.

Grobgesagt: Bei beiden Rechenwegen kommst Du auf eine Gleichung am
Ende, und diese "Endgleichungen" sind äquivalent. Daher hast Du die
gleiche Lösungsmenge auf zwei unterschiedlichen Wegen errechnet.
Schlimm' wäre es, wenn bei der einen Rechnung am Ende eine andere
Lösungsmenge steht wie bei der anderen Rechnung...

Gruß,
  Marcel

Bezug
                
Bezug
2 versch. Ergebnisse(Gleichg.): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:09 Mo 19.05.2014
Autor: Giraffe

Hallo Angela, Hallo Marcel,

>Schlimm' wäre es, wenn bei der einen Rechnung am
>Ende eine andere Lösungsmenge steht wie bei der
>anderen Rechnung...

und genau das dachte ich (wo habe ich falsch umgeformt).

Das beide Versuche nach y aufzulösen kein Ergebnis brachten,

also   [mm] \IL [/mm] = { }, das hatte ich schon, bevor ich hier postete.


Euch beiden erstmal vielen DANK!

Gruß
Sabine

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]