matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastik2 Stufiges Zufallsexperiment
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stochastik" - 2 Stufiges Zufallsexperiment
2 Stufiges Zufallsexperiment < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2 Stufiges Zufallsexperiment: Abhängigkeit, Inverses
Status: (Frage) beantwortet Status 
Datum: 21:30 Sa 14.02.2015
Autor: Idlefix

Aufgabe
Mit Welcher Wahrscheinlichkeit tritt eine der Ergebnisse von B auf nachdem ein Ergbnis von A eingetreten ist?

Hallo ich Habe eine Frage zur Stochastik.

Ich habe eine Reihe von Daten.

A kann sein 2,1,0,−1 und −2.
Die Anzahl der Ergebnisse für A ist 25.
Dabei kommt 10 mal 2,3 mal 1,3 mal 0,5 mal −1 und 4 mal −2 vor.

nun wird ein folge Versuch durchgeführt. Der nennt sich B. Hier haben sich aber die
Ergebnisse geändert, wobei bei B auch 2,1,0,−1 und −2 rauskommen kann.
Die Ergebnisse von B sind:
8 mal 2,11 mal 1,3 mal 0,1 mal −1 imd 2 mal −2.

Nun möchte ich berechnen, mit welcher Wahrscheinlichkeit auf eine 2,1,0,−1 und −2
eine 2,1,0,−1 und −2 folgte.

Ich hab dazu ein paar Überlegungen angestellt.
Meine erste Überlegung war Beernoulli. Aber das geht nicht, weil mehr als 2 mögliche Ergebnisse.
Meine zweite Überlegung war einfach die Wahrscheinlichkeit von jedem Ergbnise von A und dann im zweiten Schritt die Wahrscheinlichkeiten von B auszurechnen und nach der Pfadregel zu multiplizieren.
Aber nun zu meiner Frage. Ist dies richtig oder funktioniert das nicht, weil eventuell hierbei die Abhängigkeit eine Rolle spielt? Muss ich da eventuell über den Inversen Baum rangehen? Oder wie Funktioniert dies?

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.onlinemathe.de/forum/Wahrscheinlichkeitsrechnung-2445

        
Bezug
2 Stufiges Zufallsexperiment: Antwort
Status: (Antwort) fertig Status 
Datum: 22:42 Sa 14.02.2015
Autor: Fulla

Hallo Idlefix,

[willkommenmr]


> Mit Welcher Wahrscheinlichkeit tritt eine der Ergebnisse
> von B auf nachdem ein Ergbnis von A eingetreten ist?
> Hallo ich Habe eine Frage zur Stochastik.

>

> Ich habe eine Reihe von Daten.

>

> A kann sein 2,1,0,−1 und −2.
> Die Anzahl der Ergebnisse für A ist 25.
> Dabei kommt 10 mal 2,3 mal 1,3 mal 0,5 mal −1 und 4 mal
> −2 vor.

>

> nun wird ein folge Versuch durchgeführt. Der nennt sich B.
> Hier haben sich aber die
> Ergebnisse geändert, wobei bei B auch 2,1,0,−1 und −2
> rauskommen kann.
> Die Ergebnisse von B sind:
> 8 mal 2,11 mal 1,3 mal 0,1 mal −1 imd 2 mal −2.

>

> Nun möchte ich berechnen, mit welcher Wahrscheinlichkeit
> auf eine 2,1,0,−1 und −2
> eine 2,1,0,−1 und −2 folgte.

>

> Ich hab dazu ein paar Überlegungen angestellt.
> Meine erste Überlegung war Beernoulli. Aber das geht
> nicht, weil mehr als 2 mögliche Ergebnisse.
> Meine zweite Überlegung war einfach die
> Wahrscheinlichkeit von jedem Ergbnise von A und dann im
> zweiten Schritt die Wahrscheinlichkeiten von B auszurechnen
> und nach der Pfadregel zu multiplizieren.
> Aber nun zu meiner Frage. Ist dies richtig oder
> funktioniert das nicht, weil eventuell hierbei die
> Abhängigkeit eine Rolle spielt? Muss ich da eventuell
> über den Inversen Baum rangehen? Oder wie Funktioniert
> dies?

Was du suchst, sind bedingte Wahrscheinlichkeiten, z.B. [mm]P_{A=1}(B=-2)[/mm] bzw. [mm]P(B=-2\ |\ A=1)[/mm]. Die berechnen sich so: [mm]P_A(B)=\frac{P(A\cap B)}{P(A)}[/mm].
Es reicht hier nicht, wenn du nur die einzelnen Verteilungen der Zufallsexperimente A und B kennst. Du musst z.B. wissen, wie oft nach dem Ergebis 1 im Experiment A das Ergebnis -2 im Experiment B auftrat. Da du aber von einem Baumdiagramm schreibst, gehe ich davon aus, dass du die Daten entsprechend vorliegen hast.

Wenn du das Baumdiagramm schon gezeichnet hast, sind die gesuchten Wahrscheinlichkeiten (eigentlich sind es relative Häufigkeiten) die Zahlen, die du an die unteren Äste schreibst. Also, nicht die Zahlen ganz am Ende der Äste (dort steht [mm] $P(A\cap [/mm] B)$). Siehe das Bild []hier (in deinem Fall sind A und B allerdings vertauscht, d.h. oben im Baum sind die Ausgänge für A und unten für B).


Lieben Gruß,
Fulla

Bezug
                
Bezug
2 Stufiges Zufallsexperiment: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:53 Sa 14.02.2015
Autor: Idlefix

Genau das hab ich. Ich weis wie oft 2 1 0 -1 und -2 auftreten wenn vorher z.b. 2 war. Ich kann ja mal meine Ergebnisse genau Aufschreiben.


Bei Versuch A Gab es 2 darauf folgte 5*2, 4*1, 1*0 und kein mal -1 und -2
Bei Versuch A Gab es 1 darauf folgte 3*1 sonst nix.
Bei Versuch A Gab es 0 darauf folgte 1*2, 2*1 sonst nix.
Bei Versuch A Gab es -1 darauf folgte 1*1, 2*0, 1*-1, 1*-2
Bei Versuch A Gab es -2 darauf folgte 2*2. 1*1 und 1*-2.



Bezug
                        
Bezug
2 Stufiges Zufallsexperiment: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:34 So 15.02.2015
Autor: Fulla


> Genau das hab ich. Ich weis wie oft 2 1 0 -1 und -2
> auftreten wenn vorher z.b. 2 war. Ich kann ja mal meine
> Ergebnisse genau Aufschreiben.

>
>

> Bei Versuch A Gab es 2 darauf folgte 5*2, 4*1, 1*0 und kein
> mal -1 und -2
> Bei Versuch A Gab es 1 darauf folgte 3*1 sonst nix.
> Bei Versuch A Gab es 0 darauf folgte 1*2, 2*1 sonst nix.
> Bei Versuch A Gab es -1 darauf folgte 1*1, 2*0, 1*-1,
> 1*-2
> Bei Versuch A Gab es -2 darauf folgte 2*2. 1*1 und 1*-2.


Hallo Idlefix,

ich mach es dir mal vor.
Wie groß ist die Wahrscheinlichkeit (relative Häufigkeit), dass nach einer 2 (A) noch eine 2 (B) gekommen ist?
Gemäß Formel ist das [mm]P_{A=2}(B=2)=\frac{P(\{A=2\}\cap \{B=2\})}{P(A=2)}=\dfrac{\frac{5}{25}}{\frac{10}{25}}=\frac{5}{10}=\frac 12[/mm]

Erklärung: Im Zähler steht die Wahrscheinlichkeit dafür, dass das Ergebnis 2/2 war. Das war in 5 von 25 Ausgängen der Fall. Im Nenner steht die Wahrscheinlichkeit dafür, dass beim ersten Durchgang das Ergebnis 2 war.

Bei deinem speziellen Fall kannst du noch ein bisschen abkürzen (du wirst immer 25-stel haben, die sich wegkürzen).
Du kannst auch "Anzahl günstige Möglichkeiten / Anzahl gesamte Möglichkeiten" verwenden.
Beispiel: Ergebnis -2/2
Beim ersten Durchgang kam die -2 viermal. Davon fiel beim zweiten Durchgang zweimal die 2. Es ist also [mm]P_{A=-2}(B=2)=\frac 24=\frac 12[/mm].


Lieben Gruß,
Fulla

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]