matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorie2 Kugeln ziehen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - 2 Kugeln ziehen
2 Kugeln ziehen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2 Kugeln ziehen: Wahrscheinlichkeit
Status: (Frage) beantwortet Status 
Datum: 15:23 So 06.01.2013
Autor: bandchef

Aufgabe
Gegeben ist eine Urne mit einer roten Kugel, drei blauen Kugeln und 6 schwarzen Kugeln. Es werden nun 2 Kugeln ohne zurücklegen gezogen. Geben sie die Wahrscheinlichkeiten für die möglichen Ergebnisse an!



Hi Leute!

Ich hab mir nun erstmal alle möglichen Kombinationen überlegt:

(r,s),(r,b),(s,s),(b,b),(s,b),(s,r),(b,r),(b,s)

Dann hab ich mir Gedanken zur Grundmenge gemacht:

[mm] $\Omega [/mm] = [mm] \{1,2,...,10\}$ [/mm]

Ich weiß nun, dass ich die 8 Wahrscheinlichkeiten der obigen aufgezählten Kombinationen ausrechnen muss. Aber hierzu weiß ich nicht mehr, was das "," zwischen den Bezeichnungen der Kugeln bedeutet. Wie ich die WSKen miteinander verknüpfen muss ist das Problem. Ist das Schnittmenge oder Vereinigungsmenge?

        
Bezug
2 Kugeln ziehen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:37 So 06.01.2013
Autor: M.Rex

Hallo

Zeichne dir das ganze mal als Baumdiagramm, dann solltest du sehen, wie du die Wahrscheinlichkeiten berechnest.

Am Ende hast du bei dem Baumdiagramm 8 Pfade.

Nun überlege dir, wie du mit diesen Pfaden die Wahrscheinlichkeiten berechnest.

Marius


Bezug
                
Bezug
2 Kugeln ziehen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 So 06.01.2013
Autor: bandchef

Ich hab mir nun so ein Baumdiagramm aufgemalt. Ich komm nun bspw. für die Kombination (s,r) auf folgendes: [mm] \frac{6}{10} [/mm] + [mm] \frac{1}{9} [/mm] = [mm] \frac{32}{45} [/mm]

Ich hab aber den Eindruck, dass das falsch ist.

Bezug
                        
Bezug
2 Kugeln ziehen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 So 06.01.2013
Autor: M.Rex


> Ich hab mir nun so ein Baumdiagramm aufgemalt. Ich komm nun
> bspw. für die Kombination (s,r) auf folgendes:
> [mm]\frac{6}{10}[/mm] + [mm]\frac{1}{9}[/mm] = [mm]\frac{32}{45}[/mm]
>  
> Ich hab aber den Eindruck, dass das falsch ist.

Ist as auch. Was passiert mit den Wahrscheinlichkeiten auf einem Pfad?

Das Ergebnis eine rote und eine schwarze Kugen zu liehen, erreichst du aber auch noch über (r,s).

Marius


Bezug
                                
Bezug
2 Kugeln ziehen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:05 So 06.01.2013
Autor: bandchef


> Was passiert mit den Wahrscheinlichkeiten auf einem Pfad?

Wahrscheinlichkeiten auf einem Pfad werden meiner Ansicht nach addiert, oder? Aber gut, wenn du schon schreibst, dass es falsch ist, werden die Teilwahrscheinlichkeiten wohl multipliziert werden. Was anderes gibts ja dann auch nicht mehr. Zumindestens in der Wahrscheinlichkeitsrechnung


> Das Ergebnis eine rote und eine schwarze Kugen zu liehen, erreichst du aber auch noch über (r,s).

Hab ich dann mehrere Wahrscheinlichkeiten?

Wahrscheinlichkeit für (s,r): [mm] $\frac{6}{10} \cdot \frac{1}{9} [/mm] = [mm] \frac{1}{15}$ [/mm]
Wahrscheinlichkeit für (r,s): [mm] $\frac{1}{10} \cdot \frac{6}{9} [/mm] = [mm] \frac{1}{15}$ [/mm]

Nun gut, jetzt hab ich herausgefunden, dass die zwei Pfade anscheinend die gleichen Wahrscheinlichkeiten haben. Aber wie weiter?

Bezug
                                        
Bezug
2 Kugeln ziehen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 So 06.01.2013
Autor: M.Rex


> > Was passiert mit den Wahrscheinlichkeiten auf einem Pfad?
>  
> Wahrscheinlichkeiten auf einem Pfad werden meiner Ansicht
> nach addiert, oder?

Nein.

> Aber gut, wenn du schon schreibst, dass
> es falsch ist, werden die Teilwahrscheinlichkeiten wohl
> multipliziert werden.

Ja.

> Was anderes gibts ja dann auch nicht
> mehr. Zumindestens in der Wahrscheinlichkeitsrechnung
>  

Wohl wahr.

>
> > Das Ergebnis eine rote und eine schwarze Kugen zu liehen,
> erreichst du aber auch noch über (r,s).
>  
> Hab ich dann mehrere Wahrscheinlichkeiten?
>  
> Wahrscheinlichkeit für (s,r): [mm]\frac{6}{10} \cdot \frac{1}{9} = \frac{1}{15}[/mm]
>  
> Wahrscheinlichkeit für (r,s): [mm]\frac{1}{10} \cdot \frac{6}{9} = \frac{1}{15}[/mm]
>  
> Nun gut, jetzt hab ich herausgefunden, dass die zwei Pfade
> anscheinend die gleichen Wahrscheinlichkeiten haben. Aber
> wie weiter?

Addiere beide Pfadwahrscheinlichkeiten.

Marius


Bezug
                                                
Bezug
2 Kugeln ziehen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:17 So 06.01.2013
Autor: bandchef

In einer Hilfestellung zu dieser Aufgabe steht nun weiter, dass man hier anscheinend auch mit der bedingten Wahrscheinlichkeit arbeiten kann und dazu ist ein Beispiel gegeben (bis zum letzten "=" ist es gegeben, das andere hab ich gemacht):

$P(r,s) = P(r [mm] \cap [/mm] s) = P(r) [mm] \cdot [/mm] P(s|r) = P(r) [mm] \cdot \frac{P(s \cap r)}{P(r)} [/mm] = P(s [mm] \cap [/mm] r) = ...?$

Kann man das so auch ausrechnen? Irgendwie komm ich da jetzt nicht mehr weiter, weil ich ja jetzt im Argument der Wahrscheinlichkeit wieder so Schnittmengenzeichen hab und ich das theoretisch ja jetzt wieder in so eine bedingte Wahrscheinlichkeit zerlegen müsste...; und das ginge ja dann immer so weiter.


Auf jeden Fall hab ich jetzt mal nach deinem Ansatz die anderen noch fehlenden Wahrscheinlichkeiten berechnet:

$P(r,b) + P(b,r) = [mm] \frac{1}{30} [/mm] + [mm] \frac{1}{30} [/mm] = [mm] \frac{1}{16}$ [/mm]
$P(s,b) + P(b,s) = [mm] \frac{6}{10} [/mm] + [mm] \frac{5}{9} [/mm] = [mm] \frac{2}{5}$ [/mm]

Bei diesen Kombinationen wird's interessant
$P(b,b) = [mm] \frac{3}{10} \cdot \frac{2}{9}= \frac{1}{15}$ [/mm]
$P(s,s) = [mm] \frac{6}{10} \cdot \frac{5}{9} [/mm] = [mm] \frac{1}{3}$ [/mm]

Bezug
                                                        
Bezug
2 Kugeln ziehen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Di 08.01.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
2 Kugeln ziehen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 So 06.01.2013
Autor: mathemak

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo!

Werden die Kugeln unter Beachtung der Reihenfolge aus der Urne gezogen oder gar mit einem Griff? Das wäre auch mal eine interessante Frage.

$P({\text{rs}) = \frac{\binom{1}{1} \binom{3}{0} \binom{6}{1}}{\binom{10}{2}} = \frac{2}{15}$

Gruß

mathemak

Bezug
                
Bezug
2 Kugeln ziehen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:12 So 06.01.2013
Autor: M.Rex


> Hallo!
>  
> Werden die Kugeln unter Beachtung der Reihenfolge aus der
> Urne gezogen oder gar mit einem Griff? Das wäre auch mal
> eine interessante Frage.
>
> [mm]P({\text{rs}) = \frac{\binom{1}{1} \binom{3}{0} \binom{6}{1}}{\binom{10}{2}} = \frac{2}{15}[/mm]
>  
> Gruß
>  
> mathemak

Hallo mathemak

Ein sehr eleganter Ansatz, super.

Aber selbst wenn ich das ganze mit einem Griff ziehe, kann ich das nicht dennoch mit "Ziehen ohne Zurücklegen" modellieren?

Marius


Bezug
                        
Bezug
2 Kugeln ziehen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:30 So 06.01.2013
Autor: mathemak


> Hallo mathemak
>  
> Ein sehr eleganter Ansatz, super.
>  
> Aber selbst wenn ich das ganze mit einem Griff ziehe, kann
> ich das nicht dennoch mit "Ziehen ohne Zurücklegen"
> modellieren?
>  

Hab' ich doch, oder? Stichwort: Hypergeometrische Verteilung?

Ich habe einfach statt der zwei Binomialkoeffizienten drei, je nach vorhandenen Farben eben.

Du kannst das immer mit einem Baumdiagramm machen, musst aber darüber nachdenken, dass ein Baumdiagramm immer eine Reihenfolge suggeriert, die bei "Ziehen mit einem Griff" nicht vorhanden ist. Am Ende denkst Du kurz darüber nach, welche Enden im Baumdiagramm zusammenfallen bzw. nicht unterscheidbar sind und gut ist's.

Gruß

mathemak

Bezug
                                
Bezug
2 Kugeln ziehen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:37 So 06.01.2013
Autor: M.Rex


> > Hallo mathemak
>  >  
> > Ein sehr eleganter Ansatz, super.
>  >  
> > Aber selbst wenn ich das ganze mit einem Griff ziehe, kann
> > ich das nicht dennoch mit "Ziehen ohne Zurücklegen"
> > modellieren?
>  >  
>
> Hab' ich doch, oder? Stichwort: Hypergeometrische
> Verteilung?
>  
> Ich habe einfach statt der zwei Binomialkoeffizienten drei,
> je nach vorhandenen Farben eben.
>
> Du kannst das immer mit einem Baumdiagramm machen, musst
> aber darüber nachdenken, dass ein Baumdiagramm immer eine
> Reihenfolge suggeriert, die bei "Ziehen mit einem Griff"
> nicht vorhanden ist. Am Ende denkst Du kurz darüber nach,
> welche Enden im Baumdiagramm zusammenfallen bzw. nicht
> unterscheidbar sind und gut ist's.
>
> Gruß
>  
> mathemak

Überredet ;-)

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]