matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgaben2 Gleichungen 3 Variabeln Stbf
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Steckbriefaufgaben" - 2 Gleichungen 3 Variabeln Stbf
2 Gleichungen 3 Variabeln Stbf < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2 Gleichungen 3 Variabeln Stbf: allgemeine Frage
Status: (Frage) beantwortet Status 
Datum: 16:42 Di 13.05.2008
Autor: Laura1988

Aufgabe
Gesucht ist eine ganzrationale Funktion mit minimalem Grad, die 3 Wendestellen besitzt und punktsymmetrisch zum Ursprung ist. Sie hat einen Wendepunkt (1/1).

Hallo,

beim aufstellen der Bedingungen fehlt mir eine. Also:

Minimaler Grad => [mm] ax^5+bx^4+cx^3+dx^2+ex+f [/mm] (da die funktion 3 WP hat)
Punktsymmetrisch zum Ursprung=> [mm] ax^5+cx^3+ex [/mm]

f(1)=1 => a+c+e=1

f"(x)=0 => 20a+6c=0

Könnte man jetzt nicht auch einfach für einen Koeffizienten eine Zahl einsetzen? Ich hab mal gelernt, dass wenn man zwei Gleichungen hat, die drei Variabeln enthalten, das Gleichungssystem unendlich viele Lösungen besitzt.

Falls das nicht geht, fehlt mir halt immer noch eine Bedingung. Findet ihr noch eine?

Wäre dankbar für Hilfe!

Laura



        
Bezug
2 Gleichungen 3 Variabeln Stbf: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:48 Di 13.05.2008
Autor: Herby

Hallo Laura,

in deiner Aufgabe steht doch punktsymmetrisch zum [mm] \green{Ursprung} [/mm] - damit hättest du deine dritte Gleichung.

Liebe Grüße
Herby

Bezug
        
Bezug
2 Gleichungen 3 Variabeln Stbf: Kurvenschar
Status: (Antwort) fertig Status 
Datum: 16:52 Di 13.05.2008
Autor: Loddar

Hallo Laura!


Ich widerspreche Herby ja nur äußerst ungerne ... aber ich denke er liegt hier nicht ganz richtig, da Du die Eigenschaft der Symmetrie bereits korrekt verarbeitet hast.

Ich denke mal, dass Du hier eine Kurvenschar hast und Du eine der 3 Variablen als Parameter wählen kannst / musst.


Gruß
Loddar


Bezug
                
Bezug
2 Gleichungen 3 Variabeln Stbf: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:43 Di 13.05.2008
Autor: Herby

Hallo [winken]

> Hallo Laura!
>  
>
> Ich widerspreche Herby ja nur äußerst ungerne ... aber ich
> denke er liegt hier nicht ganz richtig, da Du die
> Eigenschaft der Symmetrie bereits korrekt verarbeitet
> hast.

is doch ok :-) -- widersprich mir nur fleißig

>  
> Ich denke mal, dass Du hier eine Kurvenschar hast und Du
> eine der 3 Variablen als Parameter wählen kannst / musst.

[daumenhoch]  eine Möglichkeit wäre ja dann: [mm] f(x)=\bruch{3}{7}x^5-\bruch{10}{7}x^3+2x [/mm]

gelle ;-)


Lg
Herby


Bezug
                        
Bezug
2 Gleichungen 3 Variabeln Stbf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:16 Di 13.05.2008
Autor: Laura1988

Hab ich auch raus!

Dankesehr :)

Also kann man beliebig wählen?

Lg

Bezug
                                
Bezug
2 Gleichungen 3 Variabeln Stbf: Antwort
Status: (Antwort) fertig Status 
Datum: 18:20 Di 13.05.2008
Autor: Herby

Hallo Laura,

ja, ich sehe zumindest im Augenblick keine andere Lösung als die von Loddar vorgeschlagene. Ob du nun a,c oder e beliebig wählst, spielt hierbei keine Rolle - ich hatte e=2 gewählt.

Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]