matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihen2 Fragen zu Potenzreihen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - 2 Fragen zu Potenzreihen
2 Fragen zu Potenzreihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2 Fragen zu Potenzreihen: Quotientenkriterium, exp-Funk.
Status: (Frage) beantwortet Status 
Datum: 20:58 Mo 05.10.2009
Autor: neuling_hier

Aufgabe
Zwei Fragen zu Potenzreihen (Skript), siehe unten!

Hallo liebes Forum,

bei mir haben sich beim Stöbern in einem Matheskript zwei Fragen bezüglich Potenzreihen ergeben, die Ihr mir hoffentlich beantworten könnt. Zunächst einmal die zitierten Skriptzeilen (es sind größtenteils "allgemeine" Aussagen, die sich auch in anderen Lehrbüchern wie z.B. dem "Heuser" finden lassen):

[Anfang Zitat]

Satz:
Sei [mm] \sum_{n=0}^\infty a_n(z-z_0)^n [/mm] Potenzreihe mit Konvergenzradius r. Existiert der (möglicherweise uneigentliche) Grenzwert [mm] \limes_{n\rightarrow\infty}|\frac{a_{n+1}}{a_n}| [/mm] , so gilt r = [mm] \limes_{n\rightarrow\infty}|\frac{a_{n+1}}{a_n}| [/mm] .

Beweis:
[...] (mittels Verweis auf Quotientenkriterium für absolute Konvergenz).

Beispiel:
Sei [mm] a_n [/mm] := [mm] \frac{1}{n!} [/mm] für [mm] n\in\IN_0. [/mm] Dann gilt [mm] \limes_{n\rightarrow\infty}|\frac{a_{n+1}}{a_n}| [/mm] = [mm] \limes_{n\rightarrow\infty}|\frac{(n+1)!}{n!}| [/mm] = [mm] \limes_{n\rightarrow\infty}n+1 [/mm] = [mm] \infty. [/mm] Es folgt, dass die Potenzreihe [mm] \sum_{n=0}^\infty\frac{1}{n!}z^n [/mm] fuer alle [mm] z\in\IC [/mm] konvergiert.
Ein Nebenergebnis ist, dass [mm] \limes_{n\rightarrow\infty}\wurzel[n]{n!} [/mm] = [mm] \infty. [/mm]

[Ende Zitat]

Nun meine Fragen:

1) Zu der Aussage "Es folgt, dass die Potenzreihe [mm] \sum_{n=0}^\infty\frac{1}{n!}z^n [/mm] fuer alle [mm] z\in\IC [/mm] konvergiert": Was ist, wenn ich z=0 wähle? Dann ergibt sich beim ersten Index (also n=0) der "Teilwert" [mm] z^n [/mm] = [mm] 0^0. [/mm] Meines Wissens nach ist [mm] 0^0 [/mm] aber nicht definiert. Was passiert an dieser Stelle? Wird dieser "Wert" einfach bei der Bildung der jeweiligen (Partial)summe weggelassen?

2) Zum Zusatz "Ein Nebenergebnis ist, dass [mm] \limes_{n\rightarrow\infty}\wurzel[n]{n!} [/mm] = [mm] \infty.": [/mm] Kann mir bitte jemand erklären, warum sich das scheinbar "mal eben so" ergibt? Ich sehe das nicht so ganz?!

Im Voraus schonmal ein großes Danke für hilfreiche Antworten auf meine beiden Fragen :-)

        
Bezug
2 Fragen zu Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Mo 05.10.2009
Autor: schachuzipus

Hallo neuling_hier,

> Zwei Fragen zu Potenzreihen (Skript), siehe unten!
>  Hallo liebes Forum,
>  
> bei mir haben sich beim Stöbern in einem Matheskript zwei
> Fragen bezüglich Potenzreihen ergeben, die Ihr mir
> hoffentlich beantworten könnt. Zunächst einmal die
> zitierten Skriptzeilen (es sind größtenteils "allgemeine"
> Aussagen, die sich auch in anderen Lehrbüchern wie z.B.
> dem "Heuser" finden lassen):
>  
> [Anfang Zitat]
>  
> Satz:
>  Sei [mm]\sum_{n=0}^\infty a_n(z-z_0)^n[/mm] Potenzreihe mit
> Konvergenzradius r. Existiert der (möglicherweise
> uneigentliche) Grenzwert
> [mm]\limes_{n\rightarrow\infty}|\frac{a_{n+1}}{a_n}|[/mm] , so gilt
> r = [mm]\limes_{n\rightarrow\infty}|\frac{a_{n+1}}{a_n}|[/mm] .
>  
> Beweis:
>  [...] (mittels Verweis auf Quotientenkriterium für
> absolute Konvergenz).
>  
> Beispiel:
>  Sei [mm]a_n[/mm] := [mm]\frac{1}{n!}[/mm] für [mm]n\in\IN_0.[/mm] Dann gilt
> [mm]\limes_{n\rightarrow\infty}|\frac{a_{n+1}}{a_n}|[/mm]

Hier muss es doch [mm] $\lim\limits_{n\to\infty}\left|\frac{a_{\red{n}}}{a_{\red{n+1}}}\right|$ [/mm] lauten

> = [mm]\limes_{n\rightarrow\infty}|\frac{(n+1)!}{n!}|[/mm] =
> [mm]\limes_{n\rightarrow\infty}n+1[/mm] = [mm]\infty.[/mm] Es folgt, dass die
> Potenzreihe [mm]\sum_{n=0}^\infty\frac{1}{n!}z^n[/mm] fuer alle
> [mm]z\in\IC[/mm] konvergiert.
>  Ein Nebenergebnis ist, dass
> [mm]\limes_{n\rightarrow\infty}\wurzel[n]{n!}[/mm] = [mm]\infty.[/mm]
>  
> [Ende Zitat]
>  
> Nun meine Fragen:
>  
> 1) Zu der Aussage "Es folgt, dass die Potenzreihe
> [mm]\sum_{n=0}^\infty\frac{1}{n!}z^n[/mm] fuer alle [mm]z\in\IC[/mm]
> konvergiert": Was ist, wenn ich z=0 wähle? Dann ergibt
> sich beim ersten Index (also n=0) der "Teilwert" [mm]z^n[/mm] = [mm]0^0.[/mm]
> Meines Wissens nach ist [mm]0^0[/mm] aber nicht definiert. Was
> passiert an dieser Stelle? Wird dieser "Wert" einfach bei
> der Bildung der jeweiligen (Partial)summe weggelassen?

[mm] $0^0$ [/mm] ist so ein Streitthema, üblicherweise setzt man als Konvention [mm] $0^0:=1$ [/mm] fest, das bietet sich gerade hier bei den Potenzreihen praktischerweise an ...

>  
> 2) Zum Zusatz "Ein Nebenergebnis ist, dass
> [mm]\limes_{n\rightarrow\infty}\wurzel[n]{n!}[/mm] = [mm]\infty.":[/mm] Kann
> mir bitte jemand erklären, warum sich das scheinbar "mal
> eben so" ergibt? Ich sehe das nicht so ganz?!

Nun, du kannst den Konvergenzradius anstatt über das Quotientenkriterium auch über das Wurzelkriterium herleiten, was zum Kriterium von Cauchy-Hadamard führt.

Der K-Radius $r$ einer Potenzreihe [mm] $\sum\limits_{n=0}^{\infty}a_n\cdot{}x^n$ [/mm] berechnet sich danach als [mm] $r=\frac{1}{\limsup\limits_{n\to\infty}\sqrt[n]{|a_n|}}$. [/mm]

Wie gesagt, die Herleitung folgt ganz analog der Herleitung aus dem QK

Also ist der K-radius der Reihe [mm] $\sum\limits_{n=0}^{\infty}\frac{1}{n!}\cdot{}x^n$ [/mm] dann [mm] $\frac{1}{\limsup\limits_{n\to\infty}\sqrt[n]{\left|\frac{1}{n!}\right|}}=\limsup\limits_{n\to\infty}\sqrt[n]{n!}$ [/mm]

Und den K-radius habt ihr ja im Bsp. oben mit dem QK als [mm] $\infty$ [/mm] berechnet.

Also [mm] $\limsup\limits_{n\to\infty}\sqrt[n]{n!}=\lim\limits_{n\to\infty}\sqrt[n]{n!}=\infty$ [/mm]

  

> Im Voraus schonmal ein großes Danke für hilfreiche
> Antworten auf meine beiden Fragen :-)


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]