matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körper251-Sylow-Gruppe in S_2008
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - 251-Sylow-Gruppe in S_2008
251-Sylow-Gruppe in S_2008 < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

251-Sylow-Gruppe in S_2008: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 So 30.03.2008
Autor: nukthem

Aufgabe
Geben Sie eine 251-Sylow-Gruppe in [mm]S_{2008}[/mm] an und bestimmen Sie ihre Struktur.

Hallo!
Um die o.g. Aufgabe zu lösen, habe ich zunächst einmal die Ordnung der 251-Sylow-Gruppen in [mm]S_{2008}[/mm] bestimmt:
[mm]|S_{2008}|=2008!=m*251*(2*251)*\ldots*(8*251)=m*8!*251^8[/mm] für ein geeignetes [mm]m \in \mathbb{Z}[/mm] und ggT(m,251)=1.
Also haben die 251-Sylow-Gruppen in [mm]S_{2008}[/mm] alle die Ordnung [mm]251^8[/mm].
Mein Problem besteht nun darin, wie ich die Struktur einer solchen 251-Sylow-Gruppe bestimmen kann.
Ich könnte mir vorstellen, dass man um eine solche Gruppe anzugeben deren Erzeuger nennt. Nur ist sind das alles relativ große Zahlen, um mal eben ein paar Zyklen hinzuschreiben und auszuprobieren eine Untergruppe der Ordnung [mm]251^8[/mm] zu erzeugen.
Kann mir jemand einen Tip geben, wie ich bei dieser Aufgabe weiter vorgehen könnte?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
251-Sylow-Gruppe in S_2008: Antwort
Status: (Antwort) fertig Status 
Datum: 09:38 Mo 31.03.2008
Autor: statler

Hi und [willkommenmr]

> Geben Sie eine 251-Sylow-Gruppe in [mm]S_{2008}[/mm] an und
> bestimmen Sie ihre Struktur.

>  Um die o.g. Aufgabe zu lösen, habe ich zunächst einmal die
> Ordnung der 251-Sylow-Gruppen in [mm]S_{2008}[/mm] bestimmt:
>  [mm]|S_{2008}|=2008!=m*251*(2*251)*\ldots*(8*251)=m*8!*251^8[/mm]
> für ein geeignetes [mm]m \in \mathbb{Z}[/mm] und ggT(m,251)=1.
>  Also haben die 251-Sylow-Gruppen in [mm]S_{2008}[/mm] alle die
> Ordnung [mm]251^8[/mm].

Nimm die Aufgabe doch erstmal genau so, wie der Text das sagt. Es wird eine 251-Sylow-Gruppe gesucht. Da wir ihre Ordnung kennnen, können wir sie uns zusammenbasteln. Wir teilen die Zahlen bis 2008 in 8 disjunkte Zyklen der Länge 251. Was ist das Erzeugnis dieser 8 Elemente? Genau!

Nächste Frage: Wie sehen die anderen 251-Sylow-Gruppen aus?
Letzte Frage (noch ohne Antwort): Wie viele gibt es?

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
251-Sylow-Gruppe in S_2008: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:44 Mo 31.03.2008
Autor: nukthem


> Hi und [willkommenmr]
>  

Danke :)

> Nimm die Aufgabe doch erstmal genau so, wie der Text das
> sagt. Es wird eine 251-Sylow-Gruppe gesucht. Da wir ihre
> Ordnung kennnen, können wir sie uns zusammenbasteln. Wir
> teilen die Zahlen bis 2008 in 8 disjunkte Zyklen der Länge
> 251. Was ist das Erzeugnis dieser 8 Elemente? Genau!

Da 2008 = 8 * 251, kann ich genau 8 disjunkte Zyklen der Länge 251 bilden:
[mm] z_1:=(1,2,\ldots,251),\ldots,z_8:=(1758,1759,\ldots,2008)[/mm]
Jeder dieser 8 Zyklen hat die Ordnung 251, weil ich jeweils jede Zahl auf ihren Nachfolger modulo 251 abbilde. Also:
[mm] ||=251 \quad \forall i=1,\ldots,8[/mm]
Weil diese Zyklen disjunkt sind, haben die von ihnen erzeugten Untergruppen nur die Identität als gemeinsames Element. Also hat das direkte Produkt von [mm]z_1,\ldots,z_8 \quad 251^8[/mm] Elemente.
Kurz: [mm][/mm] ist eine 251-Sylow Gruppe von [mm]S_{2008}[/mm].

> Nächste Frage: Wie sehen die anderen 251-Sylow-Gruppen
> aus?

Nach den Sylow-Sätzen sind alle 251-Sylow-Gruppen konjugiert zueinander.

>  Letzte Frage (noch ohne Antwort): Wie viele gibt es?
>  

Diese Fragestellung scheint etwas schwerer zu sein :)

> Gruß aus HH-Harburg
>  Dieter

Gruß zurück und danke für die Antwort.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]