2. Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:21 Mi 12.07.2006 | Autor: | Jokroi |
Aufgabe | [mm]X=2^{10}*\bruch{r_1^6*r_2^6}{(r_1+r_2)^{11}}[/mm]
Untersuchen Sie analytisch, ob die vorliegende Produktionsfunktion das Ertragsgesetz erfüllt, wenn für einen der Faktoren eine beliebige konstante Einsatzmenge angenommen wird! |
Es ist zu beweisen, dass diese Funktion einen ertragsgesetzlichen Verlauf hat, d.h. zuerst [mm]x'>0[/mm] und [mm]x''>0[/mm], dann [mm]x'>0[/mm] aber [mm]x''<0[/mm] und schließlich [mm]x'<0[/mm] und [mm]x''<0[/mm]. Soll heißen, es muss ein Wendepunkt existieren und nach dem Maximum soll der Ertrag trotz steigendem "Input" zurückgehen.
Ich habe [mm]r_2[/mm] als konstant definiert und hierfür den Wert 1 gewählt, um die Rechnerei zu erleichtern.
Trotzdem ist die Ermittlung der 2. Ableitung von x nach [mm]r_1[/mm] ein endloser Term mit allerhand Anwendungsbedarf für Ketten-, Produkt-, und Quotientenregel. Da es sich bei dieser Aufgabe um eine Aufgabe aus einer Altklausur handelt und die Zeit dementsprechend sehr knapp ist, fällt dieser endlos lange Lösungsweg definitiv aus. Deswegen würde ich gerne wissen, ob es hierfür nicht irgendeine Näherungsformel zur Bestimmung der 2. Ableitung gibt, bzw. ob ich mich einfach verheddert habe und den Wald (d.h. die einfache Lösung) vor lauter Bäumen nicht sehe.
Danke für die Hilfe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|