matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaschinenbau2.Schwerpunkt und Stabkraft
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Maschinenbau" - 2.Schwerpunkt und Stabkraft
2.Schwerpunkt und Stabkraft < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2.Schwerpunkt und Stabkraft: Tipp
Status: (Frage) beantwortet Status 
Datum: 09:19 So 26.06.2016
Autor: Boje

Aufgabe
Berechnen Sie die Koordinaten des Schwerpunktes und die Kraft im Stab.
[Dateianhang nicht öffentlich]


Hallo,

den Schwerpunkt habe ich berechnet und auch die Gleichgewichtsbedingungen aufgestellt.
[Dateianhang nicht öffentlich]
[Dateianhang nicht öffentlich]
Nur Frage ich mich, wie ich [mm] A_{x} [/mm] bzw [mm] B_{x} [/mm] berechne.
Habe ich [mm] A_{y} [/mm] bzw [mm] B_{y} [/mm] richtig angetragen?
Ausserdem bin ich nicht ganz sicher, ob ich die Gleichgewichtsbedinungen richtig aufgestellt habe.
Wie soll ich nun weiter vorgehen?

Bin für Hinweise dankbar!
Boje

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 3 (Typ: jpg) [nicht öffentlich]
        
Bezug
2.Schwerpunkt und Stabkraft: Antwort
Status: (Antwort) fertig Status 
Datum: 08:53 Mo 27.06.2016
Autor: HJKweseleit

Den Schwerpunkt hast du auf jeden Fall richtig ausgerechnet. Die anderen Fragen kann ich nicht beantworten, da ich kein Techniker bin.

Bezug
        
Bezug
2.Schwerpunkt und Stabkraft: Korrekturen
Status: (Antwort) fertig Status 
Datum: 11:19 Mo 27.06.2016
Autor: Loddar

Hallo Boje!


Warum schreibst Du in der Skizze am rechten Auflager " [mm] $B_x*\sin [/mm] \ [mm] 30^\circ$ [/mm] " bzw. " [mm] $B_y*\cos [/mm] \ [mm] 30^\circ$ [/mm] " ?
Das stimmt so nicht!
Das sind [mm] $B_x$ [/mm] bzw. [mm] $B_y$ [/mm] , welche sich aus der Gesamtresultierenden $B_$ am Ende mittels dieser Winkelfunktionen bestimmen lassen.

Mittels [mm] $\summe M^{(A)}$ [/mm] bzw. [mm] $\summe M^{(B)}$ [/mm] kannst Du zunächst [mm] $B_y$ [/mm] bzw. [mm] $A_y$ [/mm] bestimmen.
Aus [mm] $B_y$ [/mm] folgt dann mittels Winkelfunktionen [mm] $B_x$ [/mm] und daraus dann [mm] $A_x [/mm] \ = \ [mm] B_x$ [/mm] .


Gruß
Loddar

Bezug
                
Bezug
2.Schwerpunkt und Stabkraft: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 Mo 27.06.2016
Autor: Boje

Hallo Loddar,

> Warum schreibst Du in der Skizze am rechten Auflager "
> [mm]B_x*\sin \ 30^\circ[/mm] " bzw. " [mm]B_y*\cos \ 30^\circ[/mm] " ?
>  Das stimmt so nicht!
>  Das sind [mm]B_x[/mm] bzw. [mm]B_y[/mm] , welche sich aus der
> Gesamtresultierenden [mm]B_[/mm] am Ende mittels dieser
> Winkelfunktionen bestimmen lassen.

Danke für den Hinweis, werde es in Zukunft beachten.
Habe es quasi aus "Gewohnheit" so gemacht. Da muss ich besser aufpassen,

  

> Mittels [mm]\summe M^{(A)}[/mm] bzw. [mm]\summe M^{(B)}[/mm] kannst Du
> zunächst [mm]B_y[/mm] bzw. [mm]A_y[/mm] bestimmen.

Für [mm]B_y[/mm] habe ich [mm] \bruch{25}{48}G [/mm] und [mm]A_y[/mm] = [mm] \bruch{23}{48}G [/mm]

>  Aus [mm]B_y[/mm] folgt dann mittels Winkelfunktionen [mm]B_x[/mm] und daraus
> dann [mm]A_x \ = \ B_x[/mm] .

  
Da habe ich 1,04G = [mm]A_x \ = \ B_x[/mm] raus. Bin mir aber nicht sicher. Habe mit cos 60° gerechnet.

Gruß
Boje


Bezug
                        
Bezug
2.Schwerpunkt und Stabkraft: richtiges und falsches
Status: (Antwort) fertig Status 
Datum: 19:35 Mo 27.06.2016
Autor: Loddar

Hallo Boje!


> Für [mm]B_y[/mm] habe ich [mm]\bruch{25}{48}G[/mm] und [mm]A_y[/mm] = [mm]\bruch{23}{48}G[/mm]


[ok]


> Da habe ich 1,04G = [mm]A_x \ = \ B_x[/mm] raus.

[notok]


> Bin mir aber nicht sicher. Habe mit cos 60° gerechnet.

Was hast Du genau gerechnet?

Es gilt doch auch: [mm] $\tan [/mm] \ [mm] 30^\circ [/mm] \ = \ [mm] \bruch{B_y}{B_x}$ [/mm] .


Gruß
Loddar

Bezug
                        
Bezug
2.Schwerpunkt und Stabkraft: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:37 Mo 27.06.2016
Autor: Boje


> Da habe ich 1,04G = $ [mm] A_x [/mm] \ = \ [mm] B_x [/mm] $ raus. Bin mir aber >nicht sicher. Habe mit cos 60° gerechnet.

Das soll die Stabkraft sein, nicht  $ [mm] A_x [/mm] \ = \ [mm] B_x [/mm] $!

Bezug
                                
Bezug
2.Schwerpunkt und Stabkraft: das stimmt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:38 Mo 27.06.2016
Autor: Loddar

Hallo Boje!


> Das soll die Stabkraft sein, nicht [mm]A_x \ = \ B_x [/mm]!

So passt es dann!


Gruß
Loddar

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]