matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Gleichungssysteme2-punkteform in normalform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Gleichungssysteme" - 2-punkteform in normalform
2-punkteform in normalform < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2-punkteform in normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:03 So 15.10.2006
Autor: WiZkiD

hi, am dienstag schreibe ich eine matheklausur und ich verstehe absolut nicht wie man hier.....auf das ergebnis kommt!!!

A(9|2) B(12|8) C(1|6)

gesucht ist der mittelpkt von ac, er ist (5|4)

demnach lautet die 2-punkteform ja y-4=8-4//12-5*(x-5)

wie kommt man dann auf die normalform??

im buch steht y=4/7x+8/7??

bitte um schnelle beantwortung

danke im vorraus

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[Hier gibst du bitte die direkten Links zu diesen Fragen an.]
oder
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
2-punkteform in normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 So 15.10.2006
Autor: jackiechan

Tschau WizKid!

Mit Vektoren läuft das wie geschmiert.

Nehmen wir einmal an, wir wollen zum Punkt C gelangen. Dann nähmten wir den Orstvektor von A und würden dann
[mm] \overrightarrow{AC} [/mm] addieren.

Wir wollen jetzt aber nicht zum Punkt C. Wir wollen zur Mitte von [mm] \overline{AC}. [/mm]
Dazu nehmen wir den Ortsvektor von A und addieren die "Hälfte" von [mm] \overrightarrow{AC}. [/mm]
Zuerst müssen wir aber [mm] \overrightarrow{AC} [/mm] haben.


[mm] \overline{AC} [/mm] = [mm] \vektor{1 - 9\\ 6 - 2} [/mm] = [mm] \vektor{-8 \\ 4} [/mm]


[mm] r_{C} [/mm] = [mm] r_{A} [/mm] + [mm] \bruch{1}{2} [/mm] * [mm] \overrightarrow{AC} [/mm] = [mm] \vektor{9 \\ 2} [/mm] + [mm] \vektor{\bruch{1}{2}*-8 \\ \bruch{1}{2}*4} [/mm]


[mm] r_{C} [/mm] = [mm] \vektor{9 - 4 \\ 2 + 2} [/mm] = [mm] \vektor{5 \\ 4} [/mm]

Also ist C(5/4)

Bezug
        
Bezug
2-punkteform in normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 15:10 So 15.10.2006
Autor: Event_Horizon

Hmm, du bist hier in der Vektorrechnung, da weiß ich grade nicht, was du mit der 2-Punkte-Form willst.

Du hast also die Punkte [mm] \overrightarrow{0A} [/mm] und [mm] \overrightarrow{0C} [/mm]

Um eine Gradengleichung aufzustellen, brauchst du erstmal einen Aufpunktvektor, also einen von den beiden.

Für die Parameterform benötigst du einen Richtungsvektor, das ist zum Beispiel [mm] $\overrightarrow{AC}=\overrightarrow{0C}$ [/mm] und [mm] $\overrightarrow{0A}$ [/mm]

Jetzt kannst du für die Parameterform hinschreiben:

[mm] $\vec [/mm] x= [mm] \overrightarrow{0A} [/mm] + [mm] s*\overrightarrow{AC}$ [/mm]

Für die Normalenform benötigst du einen Vektor [mm] \vec{n} [/mm] , der senkrecht auf der Graden steht

Im zweidimensionalen ist das ganz einfach: Nimm den Richtungsvektor, vertausche darin x- und y-Komponente, und verpasse einem (!) von beidem ein negatives Vorzeichen. Klar? Also beispielsweise:

[mm] $\overrightarrow{AC}=\vektor{1\\2} [/mm] \ [mm] \mapsto [/mm] \ [mm] \vec{n}=\vektor{2\\-1}$ [/mm] (das ist ein Beispiel, hat nix mit deinen Zahlen zu tun)

Jetzt schreibst du einfach:

[mm] $(\vec [/mm] x - [mm] \overrightarrow{0A})*\vec [/mm] n=0$

Bedenke: Nur die rechten beiden Vektoren enthalten Zahlen, der linke ist einfach [mm] \vektor{x\\y} [/mm]

DAS ist jetzt die Normalenform, und nichts anderes!

Jetzt zur Koordinatenform:

Angenommen, deine Normalengleichung wäre

[mm] $(\vektor{x\\y} [/mm] - [mm] \vektor{1\\2})*\vektor{3\\4}=0$ [/mm]

dann kannst du das ausrechnen:

[mm] $\vektor{x\\y}*\vektor{3\\4} [/mm] - [mm] \vektor{1\\2}*\vektor{3\\4}=0$ [/mm]


$3x+4y-(3+8)=0$

$3x+4y=11$

Und das ist die Koordinatenform, und NICHT die Normalenform!





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]