matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstiges2-dimensionales Koordinatensys
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Sonstiges" - 2-dimensionales Koordinatensys
2-dimensionales Koordinatensys < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2-dimensionales Koordinatensys: Punkteformel
Status: (Frage) beantwortet Status 
Datum: 09:10 Sa 11.11.2006
Autor: Meister1412

Aufgabe
Begründen Sie jetzt die Formel, dass sich der Abstand d zweier Punkte A(Xa|Ya) und B(Xb|Yb) berechnen lässt:

d= Die Wurzel aus (Xb-Xa)² + (Yb-Ya)²

Begründen Sie jetzt die Formel, dass sich der Abstand d der Punkte A(Xa|Ya|Za) und B(Xb|Yb|Zb) im Raum gilt:

d= die Wurzel aus (Xb-Xa)² + (Yb-Ya)² + (Zb-Za)²


Ich hoffe ihr könnt mir das in Worten erklären bzw. begründen.

THX IM VORAUS

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
2-dimensionales Koordinatensys: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:13 Sa 11.11.2006
Autor: w.bars

Kann das sein, dass es deine Frage doppelt gibt?

Bezug
                
Bezug
2-dimensionales Koordinatensys: Antwort
Status: (Antwort) fertig Status 
Datum: 12:00 Sa 11.11.2006
Autor: Lueger

Hallo

Nein das eine ist 2 Dimensional das andere 3 Dimensional.

Grüße
Lueger

Bezug
        
Bezug
2-dimensionales Koordinatensys: Antwort
Status: (Antwort) fertig Status 
Datum: 11:55 Sa 11.11.2006
Autor: Lueger

Guten Morgen ...


Die Aufgabe ist ganz einfach wenn du dir das ganze einfach mal aufzeichnest.

[Dateianhang nicht öffentlich]

Mit Hilfe eines Steigungsdreiecks kannst du dann die Entfernung ganz einfach errechnen.
Phytagoras : [mm] $c^2= a^2 [/mm] + [mm] b^2$ [/mm]

die Länge $a=xb-xa$
die Länge $b=yb-ya$

Das in die Gleichung eingesetzt gibt

[mm] $c^2=(xb-xa)^2 [/mm] + [mm] (yb-ya)^2$ [/mm]

$c= [mm] \wurzel{(xb-xa)^2 + (yb-ya)^2}$ [/mm]


Das untere ist das gleiche im Raum. Ist etwas schwieriger vorzustellen aber im Prizip das gleiche.

[Dateianhang nicht öffentlich]

Quelle: http://www.relativityhair.de/wolfgsal/LineareAlgebra/Erlaeuterungen.html

habe die Grafik etwas verändert

[Dateianhang nicht öffentlich]

Der Punkt A liegt jetzt im Ursprung
Punkt B an der Pfeilspitze

Du Berechnest zuerst die orange Linie
[mm] $\wurzel{(xb-xa)^2 + (yb-ya)^2}$ [/mm] (Phytagoras)

[Dateianhang nicht öffentlich]


Die Länge der blauen Stecke ist die Differenz der z-Koordinaten!

blau Stecke= zb-za
So nun musst du alles zusammen tragen
Phytagoras:
Schreibe es einfach mal unmathematisch

$(grüne [mm] Strecke)^2 [/mm] = (blaue [mm] Strecke)^2 [/mm] + (orange [mm] Strecke)^2$ [/mm]
Nun einsetzen: (grüne Linie = Abstand d)
[mm] $(d)^2 [/mm] = [mm] (zb-za)^2 [/mm] + [mm] (\wurzel{(xb-xa)^2 + (yb-ya)^2})^2$ [/mm]

[mm] $(d)^2 [/mm] = [mm] (zb-za)^2 [/mm] + [mm] (xb-xa)^2 [/mm] + [mm] (yb-ya)^2$ [/mm]

$d= [mm] \wurzel{(zb-za)^2 + (xb-xa)^2 + (yb-ya)^2}$ [/mm]

Hoffe es hat geholfen.

Liebe Grüße
Lueger

Dateianhänge:
Anhang Nr. 1 (Typ: jpeg) [nicht öffentlich]
Anhang Nr. 2 (Typ: gif) [nicht öffentlich]
Anhang Nr. 3 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 4 (Typ: gif) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]