matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebra1 dimensionale Unterräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - 1 dimensionale Unterräume
1 dimensionale Unterräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1 dimensionale Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:27 So 18.12.2005
Autor: Kati

Aufgabe
Es seien $W, X, Y, Z$ verschiedene 1-dimensionale Unterräume des Vektorraums $V$.
Zeigen Sie: Wenn [mm] $\dim [/mm] ((W+X) [mm] \cap [/mm] (Y+Z)) =1$ gilt, dann gilt [mm] $\dim [/mm] ((W+Y) [mm] \cap [/mm] (X+Z)) = 1$.

Ich habe diese Frage noch in keinem anderen Internetforum gestellt.

HI!

Ich hab gedacht ich kann zur lösung irgendwie zeigen dass gilt:
dim ((W+X) [mm] \cap [/mm] (Y+Z)) = dim ((W+Y) [mm] \cap [/mm] (X+Z))

Hab da mal bei dim ((W+X) [mm] \cap [/mm] (Y+Z)) angefangen:
dim ((W+X) [mm] \cap [/mm] (Y+Z)) = dim (W+X) + dim(Y+Z) - dim ((W+X) + (Y+Z)) = dim W + dim X- dim(W [mm] \cap [/mm] X) + dim Y +dim Z - dim (Y [mm] \cup [/mm] Z) - dim ((W+Y)+(X+Z))

Jetzt bin ich ja schon fast soweit. Wenn ich jetzt noch irgendwie zeigen könnte dass dim (W [mm] \cap [/mm] X) = dim (W [mm] \cap [/mm] Y) und dim (Y [mm] \cap [/mm] Z) = dim (X [mm] \cap [/mm] Z) gilt.

Aber ich kann das doch nicht einfach so sagen, auch wenn es doch ganz logisch wäre ;)

Hab ich hier schon falsch angefangen? Oder wie müsste ich weiter machen falls nicht?

Danke schonmal.

Gruß Katrin

        
Bezug
1 dimensionale Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 So 18.12.2005
Autor: Hanno

Hallo Kati!

Ich schlage folgendes vor:

Da die dir gegebenen Unterräume $W,X,Y,Z$ eindimensional sind, gibt es Vektoren [mm] $w,x,y,z\in [/mm] V$ mit [mm] $W=\langle w\rangle, X=\langle x\rangle, Y=\langle y\rangle, Z=\langle z\rangle$. [/mm] Da nun [mm] $(W+X)\cap (Y+Z)\neq \{0\}$, [/mm] existieren Koeffizienten [mm] $\lambda_i\in\IK, [/mm] i=1,2,3,4$ mit [mm] $\lambda_1 w+\lambda_2 [/mm] x = [mm] \lambda_3 y+\lambda_4 [/mm] z$. Kannst du diese Gleichung nun so umstellen, dass auf der einen Seite ein Vektor aus $W+Y$, auf der anderen ein Vektor aus $X+Z$ steht, und beide vom Nullvektor verschieden sind? Bedenke dabei, dass $w,x,y,z$ paarweise linear unabhängig sind.


Liebe Grüße,
Hanno

Bezug
                
Bezug
1 dimensionale Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 So 18.12.2005
Autor: Kati

Ich habe diese Frage noch in keinem Internetforum gestellt.

Hmm, ehrlich gesagt, weiß ich net so recht wie ich das umstellen soll. Das einfach rüber zu ziehen, wär wohl net der richtige weg ;) Wenn ich das machen könnte wär ich dann schon fertig?

Gruß kati

Bezug
                        
Bezug
1 dimensionale Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 11:29 Mo 19.12.2005
Autor: Julius

Hallo Kati!

Es gilt:

$a:= [mm] \lambda_1 [/mm] w - [mm] \lambda_3y [/mm] = [mm] \lambda_4 [/mm] z - [mm] \lambda_2 [/mm] x [mm] \in [/mm] (W+Y) [mm] \cap [/mm] (X +Z)$.

Hierbei ist $a [mm] \ne [/mm] 0$, denn wegen der linearen Unabhängigkeit von $(w,y)$ und $(z,x)$ wäre ansonsten

[mm] $\lambda_1 [/mm] = [mm] \lambda_3=0$ [/mm]  und   [mm] $\lambda_4 [/mm] = [mm] \lambda_2 [/mm] = 0$,

im Widerspruch zur vorherigen Wahl dieser Koeffizienten.

Jetzt ist die Dimension des gefragten Unterraums also mindestens gleich 1. Mache dir nun noch klar, dass sie nicht 2 sein kann (mehr geht eh nicht...).

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]