matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe Zahlen1 Rechnung, 2 Ergebnisse?!
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Komplexe Zahlen" - 1 Rechnung, 2 Ergebnisse?!
1 Rechnung, 2 Ergebnisse?! < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1 Rechnung, 2 Ergebnisse?!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 Di 16.02.2010
Autor: cosPhi

Hi,

Bin ich jetzt ganz deppert oder sitz' ich jetzt schon zu lange dran?

Folgende Gleichungen

[mm]\psi_1 = e^{j k_1 x} + A e^{-j k_1 x}[/mm]
[mm]\psi_2 = Be^{j k_2 x} + C e^{-j k_2 x}[/mm]

Nun muss erfuellt sein:

[mm]\frac{d\,\psi_1(x)}{d\,x}|_{x=0} = \frac{d\,\psi_2(x)}{d\,x}|_{x=0}[/mm]

Als Loesung bekomme ich:

[mm](1 - A) = \frac{k_2}{k_1} (B-C)[/mm]

Soweit so gut, das ganze ist Teil einer komplizierten Rechnung und ich versuche die Ergebnisse mit einem Buch zu vergleichen, wobei hier allerdings die Gleichungen

[mm]\psi_1 = e^{j k_1 x} + A e^{-j k_1 x}[/mm]
[mm]\psi_2 = Be^{k_2 x} + C e^{-k_2 x}[/mm]

verwendet werden. Also fuer [mm] \psi_2 [/mm] ein exponentieller Abklang. Rechne ich nun hier, so erhalte ich:

[mm](1 - A) = \frac{j k_2}{k_1}(C - B)[/mm]

- das gleiche was auch im Buch steht. Um nun zu vergleichen ist nun einfach [mm]k_2 = j \cdot k_2[/mm] - so denke ich.

Und auf einmal gibt es aber einen Vorzeichenfehler, wenn ich im Ergebnis dann das [mm]j k_2[/mm] durch [mm] k_2 [/mm] ersetze:

[mm](1 - A) = \frac{k_2}{k1} (C - B)[/mm]

So sehr ich es auch drehe und wende: Ich komm grad nicht drauf WIESO! Ich kann beide Arten tausendfach neu rechnen und komme stets aufs richtige Ergebnis.

Und ich habe von allen moeglichen Richtungen versucht das j passend zu setzen aber nach geschlagenen 5 A4 Seiten fang ich an zu kapitulieren :-(



        
Bezug
1 Rechnung, 2 Ergebnisse?!: Zeitabhängig
Status: (Antwort) fertig Status 
Datum: 16:14 Di 16.02.2010
Autor: Infinit

Hallo cosPhi,
aus den beiden Gleichungen werde ich nicht ganz schlau, denn diese sind keine Funktionen der Zeit. Wie kommst Du dann beim Ableiten nach der Zeit auf ein Ergebnis ungleich Null?
Viele Grüße,
Infinit

Bezug
                
Bezug
1 Rechnung, 2 Ergebnisse?!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:16 Di 16.02.2010
Autor: cosPhi

Sorry, die Macht der Gewohnheit ;-) Es wird natuerlich nach x abgeleitet, Originalpost wurde editiert!

Liebe Gruesse

Bezug
        
Bezug
1 Rechnung, 2 Ergebnisse?!: Ableitung
Status: (Antwort) fertig Status 
Datum: 16:37 Di 16.02.2010
Autor: Infinit

Hallo cosPhi,
dass hier zwei unterschiedliche Ergebnisse rauskommen, ist ja natürlich, denn bei Deinem zweiten Ansatz hast Du aus irgendwelchen Gründen in der zweiten Gleichung keinen komplexen Exponenten mehr. Ansonsten sind die Ergebnisse aber doch sehr ähnlich. Nach der zweiten Methode erhalte ich beim Gleichsetzen:
$$ [mm] jk_1 [/mm] (1 - A) = [mm] k_2 [/mm] ( B- C) $$ oder dann
$$ (1-A) = [mm] \bruch{k_2}{j k_1} [/mm] (B-C) [mm] \, [/mm] . $$
Viele Grüße,
Infinit

Bezug
                
Bezug
1 Rechnung, 2 Ergebnisse?!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Di 16.02.2010
Autor: cosPhi

Hi,

Ja, das ist es ja! Natuerlich darf und soll das jeweilige Ergebnis unterschiedlich sein! Aber wenn ich im Ergebnis wieder die gleiche Substitution mache wie bei der Angabe (d.h. [mm]j k_2 = k_2[/mm]) muessen beide Seiten doch wieder gleich sein!

Ich kann doch einen Term, wenn er immer in einer ganzen Rechnung gleich ist durch eine andere Variable substituieren, z.B. a.

Irgendwas ist hier einfach nicht konsistent und ich weiss nicht was.

Ich hoffe nur es ist nichts inherentes sonst kann ich nie ueberpruefen ob mein Ergebnis stimmt :-(



Bezug
        
Bezug
1 Rechnung, 2 Ergebnisse?!: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 Di 16.02.2010
Autor: leduart

Hallo
wenn du deinen ersten Fall ausrechnest, steht da in Wirklichkeit [mm] ik_2/ik_1 [/mm]
i ist gekürzt
im zweiten Fallt hast du dann statt [mm] ik_2 [/mm] = [mm] k_2 [/mm] gesetzt, also
wie vorher aber jetzt einach [mm] k_2/ik_1=-ik_2/k_1 [/mm]
wgen 1/i=-i
wenn du den Rechenvorgang verfolgst, siehst du, dass genau da dein Fehler steckt.
oder rechne das ganze mit statt [mm] ik_1 [/mm] und [mm] ik_2 [/mm] mit a und b, dann setz am Schluss entweder [mm] a=ik_1, b=k_2 [/mm] oder [mm] a=ik_1, b=k_2 [/mm] ein. Dann sind die Ergebnisse beide entsprechend.
Gruss leduart

Bezug
                
Bezug
1 Rechnung, 2 Ergebnisse?!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:12 Di 16.02.2010
Autor: cosPhi

Woow, danke! Na klar, ich sitz echt schon zu lange dran :-) VIEEELEN DANK!!!


Dennoch, hab ich jetzt womoeglich gar einen fehler in einem Buch entdeckt?!

http://books.google.at/books?id=40rRzNbuhpAC&pg=PA146

Gleichung 3.139

Diese erhaelt man, indem man 3.136 hernimmt und darin 3.137 und 3.138 einsetzt.

Wieso ist in 3.139 im dritten Klammerausdruck auf einmal ein Minus?! Da war doch in 3.136 noch ein Plus!

Ist das tatsaechlich ein Fehler im Buch?


Bezug
                        
Bezug
1 Rechnung, 2 Ergebnisse?!: Antwort
Status: (Antwort) fertig Status 
Datum: 18:10 Di 16.02.2010
Autor: leduart

Hallo
ich seh auch nicht, wie er von 36 auf 39 kommt, aber da ich die Seiten vorher nicht sehen kann, weiss ich nicht ob 36 oder 39 falsch ist.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]