matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Eigenwerte1 Eigenwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Eigenwerte" - 1 Eigenwert
1 Eigenwert < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1 Eigenwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:45 Mo 05.07.2010
Autor: Olga1234

Aufgabe
wir sollen eine 2x2 matrix der gestalt [mm] \pmat{ a & b \\ c & d } [/mm] finden, die nur einen eigenwert hat und a + b + c + d = 2 ergibt.

leider finde ich keine matrix, die überhaupt nur einen eigenwert hat. hat da jemand einen tipp für mich?

        
Bezug
1 Eigenwert: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Mo 05.07.2010
Autor: qsxqsx

Hallo,

Hm, weisst du den wie man Eigenwerte (aus einer Matrix bei gegeben Zahlen) bestimmt?
Antwort: mit dem charakteristischen Polynom...

det(A - [mm] \lambda*I) [/mm] = 0

Ist [mm] \lambda [/mm] ein Eigenwert der Matrix, so ist [mm] \lambda [/mm] eine Nullstelle im charakteristischen Polynom.

Du kannst nun einfach "rückwärts" gehen.


Gruss

Bezug
                
Bezug
1 Eigenwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:17 Mo 05.07.2010
Autor: Olga1234

kann man davon ausgehen, dass bei einer 2x2-matrix mit 1 eigenwert, die beiden eigenvektoren die gleichen sind?

Bezug
                        
Bezug
1 Eigenwert: Antwort
Status: (Antwort) fertig Status 
Datum: 10:49 Mo 05.07.2010
Autor: fred97


> kann man davon ausgehen, dass bei einer 2x2-matrix mit 1
> eigenwert, die beiden eigenvektoren die gleichen sind?

Nein

FRED

Bezug
                
Bezug
1 Eigenwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:35 Mo 05.07.2010
Autor: Olga1234

es würde doch dann heißen, dass das charakteristische polynom die form:

[mm] \lambda^{2} [/mm] hat.

dh:

[mm] \pmat{ a & b \\ c & d } [/mm]

[mm] \Rightarrow [/mm] (a - [mm] \lambda)(d-\lambda) [/mm] - [mm] a\lambda [/mm] - [mm] d\labda+ \lambda^{2} [/mm] - bc = [mm] \lambda^{2} [/mm]

[mm] \Rightarrow [/mm] (a - [mm] \lambda)(d-\lambda) [/mm] = 0 [mm] \Rightarrow a-\lambda \vee d-\lambda [/mm] = 0
[mm] a\lambda [/mm] = [mm] -d\lambda [/mm]
ad = bc

aber auf ne lösung komm ich trotzdem nicht, zumindest keine wo a+b+c+d=2 ist



Bezug
                        
Bezug
1 Eigenwert: Antwort
Status: (Antwort) fertig Status 
Datum: 10:48 Mo 05.07.2010
Autor: fred97


> es würde doch dann heißen, dass das charakteristische
> polynom die form:
>  
> [mm]\lambda^{2}[/mm] hat.
>  
> dh:
>  
> [mm]\pmat{ a & b \\ c & d }[/mm]
>  
> [mm]\Rightarrow[/mm] (a - [mm]\lambda)(d-\lambda)[/mm] - [mm]a\lambda[/mm] - [mm]d\labda+ \lambda^{2}[/mm]
> - bc = [mm]\lambda^{2}[/mm]
>  
> [mm]\Rightarrow[/mm] (a - [mm]\lambda)(d-\lambda)[/mm] = 0 [mm]\Rightarrow a-\lambda \vee d-\lambda[/mm]
> = 0
>  [mm]a\lambda[/mm] = [mm]-d\lambda[/mm]
> ad = bc
>  
> aber auf ne lösung komm ich trotzdem nicht, zumindest
> keine wo a+b+c+d=2 ist


Was Du da oben gerechnet hast ist mir schleierhaft !

Denk mal an die Einheitsmatrix

FRED

>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]